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Abstract
An important problem in neuroscience is to understand how brains extract relevant signals frommixtures of unknown sources,
i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer
neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to
satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic
learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput
29:2925–2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source
separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm
with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2
algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto
a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct
lateral connections and multi-compartmental output neurons.

Keywords Blind source separation · Nonnegative independent component analysis · Neural network · Local learning rules

1 Introduction

Brains effortlessly extract relevant signals from mixtures
of unknown sources (Cherry 1953; Desimone and Duncan
1995; Hulse et al. 1997; Wilson and Mainen 2006; Narayan
et al. 2007;Bee andMicheyl 2008; Shinn-Cunningham2008;
McDermott 2009; Bronkhorst 2015), an unsupervised sig-
nal processing problem known as blind source separation. A
classic example in audition is the cocktail party problem, in
which a listener tries to follow a single conversation in the
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presence of multiple background conversations. We seek a
model of how brains perform blind source separation.

A special case of blind source separation is nonnegative
independent component analysis (NICA), which assumes a
generative model in which the mixture of stimuli is a lin-
ear combination of uncorrelated, nonnegative sources, i.e.,
x = As, where s denotes the nonnegative vector of source
intensities, A is a mixing matrix and x denotes the vec-
tor of mixed stimuli. The goal of NICA is to infer the
source vectors s from the mixture vectors x. Both the lin-
ear additivity of stimuli and nonnegativity of the sources are
reasonable assumptions in biological applications. For exam-
ple, in olfaction, concentrations of odorants are both additive
and nonnegative.

Plumbley (2002) showed that when the sources are well-
grounded (i.e., they have nonzero probability of taking
infinitesimally small values), NICA can be solved in 2 steps;
see Fig. 1. In the first step, the mixture undergoes noncen-
tered whitening; that is, the mixture is linearly transformed
to have identity covariance matrix. The second step rotates
the mixture until it lies in the nonnegative orthant. The result
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Fig. 1 Illustration of Plumbley’s 2-step algorithm for NICA. The red, blue and oranges dots track three source vectors across the mixing, whitening
and rotation steps. Our algorithms transform Mixtures into Recovered Sources in a single step implemented by single-layer neural networks

of these 2 stepsmust be a permutation of the original sources.
This important observation led to a number of algorithms for
implementing the rotation step (Plumbley 2003; Plumbley
and Oja 2004; Oja and Plumbley 2004; Yuan and Oja 2004),
many of which have neural network implementations.

Unfortunately, the above-mentioned networks do not offer
a viable model of brain function because they do not satisfy
one or more of the following three common requirements for
biological plausibility (Pehlevan andChklovskii 2019). First,
the network operates in the online or streaming setting where
it receives one input at a time and the output is computed
before the next input arrives. Second, each synaptic update is
local in the sense that it depends only onvariables represented
in the pre- and postsynaptic neurons. Third, the neuronal
outputs are nonnegative.

Building on Plumbley’s method, Pehlevan et al. (2017)
proposed a2-layer network forNICA,with each layer derived
from a principled objective function. The first layer imple-
ments noncentered whitening and the second orthogonally
rotates the whitened mixture. While their networks satisfy
the requirements for biological plausibility, from a biological
perspective, there are advantages to a single-layer network
that economizes the number of neurons, which take up
valuable resources such as space (Rivera-Alba et al. 2014)
and metabolic energy (Laughlin and Sejnowski 2003). (See
(Bahroun et al. 2021) for a recent example of a single-layer
networkwith local learning rules for independent component
analysis without the nonnegativity constraint).

In this work, we derive 2 NICA algorithms (Algorithms 1
and 2) that can be implemented in biologically plausible
single-layer networks, which, respectively, require 2/3 and
1/3 asmany neurons as the 2-layer network derived in (Pehle-
van et al. 2017). The first algorithm maps onto a network
with point neurons and indirect lateral connections medi-
ated by interneurons, and the second algorithm maps onto
a network with 2-compartmental neurons and direct lateral
connections. To derive our algorithms, we adopt a normative
approach which relies on the fact that the original sources
can be expressed (up to permutation) as optimal solutions of

single objective functions that combine the 2 objectives from
(Pehlevan et al. 2017).
Notation. For integers p, q, let Rp denote p-dimensional
Euclidean space, Rp

+ denote the nonnegative orthant in R
p,

R
p×q denote the set of p×q real-valued matrices andRp×q

+
denote the subset of matrices with nonnegative entries. Let
S p

++ denote the set of p× p positive definite matrices and let
Ip denote the p × p identity matrix. We use boldface fonts
to denote vectors and matrices and superscripts to denote the
indices of a vector or matrix. For example, given a vector v ∈
R

p and matrix M ∈ R
p×q , we let vi and Mi j , respectively,

denote the i th component of v and the (i, j)th element ofM,
for 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Given T samples h1, . . . ,hT of a time series, let

〈h〉 := 1

T

T∑

t=1

ht , CHH := 1

T

T∑

t=1

(ht − 〈h〉)(ht − 〈h〉)�,

respectively, denote the empiricalmean and covariance of the
time series. Let ht := 1

t (h1 + · · · + ht ) denote the running
sample mean. Given a data matrix H = [h1, . . . ,hT ], let
δH := [h1 − 〈h〉, . . . ,hT − 〈h〉] denote the centered data
matrix.

2 Review of prior work

In this section, we review Plumbley’s analysis (Plumbley
2002) and the objective functions used by Pehlevan et al.
(2017) to derive a 2-layer network for NICA. Let d ≥ 2 and
s1, . . . , sT ∈ R

d+ beT samples ofd-dimensional nonnegative
source vectors whose components are uncorrelated. Since a
constant factor multiplying a source can be absorbed into the
associated column of the mixing matrix A, we can assume,
without loss of generality, that each component of the source
vector has unit sample variance. In particular, CSS = Id . Let
k ≥ d,A be a full rank k×d mixing matrix and define the k-
dimensional mixture vectors by xt := Ast for t = 1, . . . , T .
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2.1 Plumbley’s NICAmethod

Plumbley (2002) proposed solving NICA in 2 steps: non-
centered whitening followed by orthogonal transformation,
which are depicted in Fig. 1.

Noncentered whitening is a linear transformation y := Fx
of the mixture, where y ∈ R

d and F is a d × k whitening
matrix such that y has identity covariancematrix, i.e.,CYY =
Id . The combined effect of source mixing and prewhitening
steps, which is encoded in the d×d matrix FA (since y = Fx
and x = As), is an orthogonal transformation. To see this,
we use the facts that CSS = Id , y = FAs and CYY = Id to
write

(FA)(FA)� = (FA)CSS(FA)�

= 1

T

T∑

t=1

FA(st − 〈s〉)(st − 〈s〉)�(FA)�

= 1

T

T∑

t=1

(yt − 〈y〉)(yt − 〈y〉)� = CYY = Id .

In the second step, one looks for an orthogonal matrix R
such that the transformation z := Ry is nonnegative. For the
solution to be unique up to a permutation, each source si

must be well grounded; that is, P(si < ε) > 0 for all ε > 0.
Then by (Plumbley 2002, Theorem 1), the vector z is equal
to a permutation of the sources s.

2.2 Similarity matching objectives for the 2-step
algorithm

To obtain a biologically plausible network, Pehlevan et al.
(2017) proposednovelmathematical formulations of the non-
centered whitening and rotation steps. Here we recall the
principled objective functions they use for each layer, which
are closely related to the objective functions we use to derive
our networks. To this end, define the k × T concatenated
data matrix X := [x1, . . . , xT ]. In the first step, Pehlevan
et al. (2017) optimize, with respect to the d × T matrix
Y := [y1, . . . , yT ], the following objective:

arg min
Y∈Rd×T

− Tr(δY�δYδX�δX) subject to

δY�δY � T IT and Y = FX, (1)

for some d × k matrix F, where we recall that δY :=
[y1 − 〈y〉, . . . , yT − 〈y〉] is the centered data matrix and
the constraint enforces that the difference T IT − δY�δY
is positive semidefinite. As shown in (Pehlevan et al. 2017,
Theorem 3), objective (1) is optimized when Y is a noncen-
tered whitened transformation of X. Note that the constraint
Y = FX in equation (1) is to ensure that Y is a linear trans-
formation of X. Rather than optimizing over outputs Y, we

could alternatively optimize overwhiteningmatricesF; how-
ever, this formulation of the objective would not lead to an
algorithm with a biologically plausible network implemen-
tation.

For the second step, Pehlevan et al. (2017) introduce the
following nonnegative similarity matching (NSM) objective:

arg min
Z∈Rd×T+

‖Z�Z − Y�Y‖2Frob. (2)

The objective minimizes the mismatch between simi-
larities of the nonnegative outputs Z and the noncentered
whitened mixturesY (as measured by inner products). (Also
see the work by Erdogan and Pehlevan (2020), who consider
a related objective which allows for bounded, mixed-sign
sources.) As shown in (Pehlevan et al. 2017), any orthogo-
nal transformation of Y to the nonnegative orthant, which
corresponds to a permutation of the original sources, is a
solution of the NSM objective (2). However, it is challeng-
ing to establish uniqueness of solutions (i.e., if every solution
of (2) corresponds to a permutation of the original sources).
In general, verifying conditions for uniqueness is nontriv-
ial and usually the verification is NP-complete (Donoho and
Stodden 2003; Laurberg et al. 2008; Huang et al. 2013).

From objectives (1) and (2), Pehlevan et al. (2017) derive
a 2-step algorithm for NICA that can be implemented in a 2-
layer neural network that operates in the online setting, uses
local learning rules, andwhose rotation layer has nonnegative
neuronal outputs. The first step of their algorithm requires at
least 2d neurons and the second step requires d neurons, so
their algorithm requires 3d neurons in total.

3 Combined objectives for NICA

We now modify objectives (1) and (2) to obtain 2 objectives
forNICA,whichwill be the starting points for the derivations
of our 2 online NICA algorithms with single-layer neural
network implementations.

3.1 Adding a nonnegativity constraint to the
noncentered whitening objective

We first modify the noncentered whitening objective (1).
Note that the solution of objective (1) is not unique — left
multiplying any solutionY by an orthogonal matrixR yields
another noncentered whitened transformation of X. In fact,
the second step of Plumbley’s method (Plumbley 2002) is
to identify an orthogonal transformation R that results in
a nonnegative whitened transformation Z = RY. Here, we
combine the 2objectives by adding a nonnegativity constraint
to the noncentered whitening objective (1). In particular, we
optimize Y over the set of nonnegative matrices, denoted
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R
d×T+ , that are linear transformations of X:

arg min
Y∈Rd×T+

− Tr(δY�δYδX�δX) subject to

δY�δY � T IT and Y = FX, (3)

for some d × k matrix F, where the constraint Y = FX for
some F ∈ R

d×k ensures that Y is a linear transformation of
X.

3.2 Adding a whiteningmatrix to the NSM objective

Next, we alter the NSM objective (2) by replacing the Gram
matrix Y�Y with terms that depend only on X, which will
avoid the need for the noncentered whitening step. Consider
the eigendecomposition of the covariance matrix CXX =
U�U�, where U is a k × d matrix with orthonormal column
vectors and � is a d × d diagonal matrix whose diagonal
entries are the nonzero eigenvalues ofCXX . Then thewhiten-

ing matrix Fmust be of the formQ�− 1
2U�, whereQ can be

any d × d orthogonal matrix. Therefore,

Y�Y = X�F�FX = X�U�−1U�X = X�C+
XXX,

where C+
XX := U�−1U� is the Moore-Penrose inverse of

CXX . Substituting in for Y�Y in the NSM objective (2)
results in our second objective:

arg min
Z∈Rd×T+

‖Z�Z − X�C+
XXX‖2Frob. (4)

4 Single-layer neural networks for NICA

Starting from objectives (3) and (4), we derive our 2
online NICA algorithms. The first algorithm maps onto a
single-layer network with point neurons and indirect lateral
connections. The second algorithm maps onto a single-layer
network with 2-compartmental neurons and direct lateral
connections.

4.1 Single-layer network with point neurons and
indirect lateral connections

The derivation of our online algorithm starting from objec-
tive (3) closely follows the derivation of the whitening layer
in the network derived in (Pehlevan et al. 2017). The main
difference is that the neuronal outputs are constrained to be
nonnegative. To begin, we introduce m-dimensional activ-
ity vectors n1, . . . ,nT , with m ≥ d, which we concatenate
into the data matrix N := [n1, . . . ,nT ] and recall that
δN := [n1 − 〈n〉, . . . ,nT − 〈n〉] denotes the centered data

matrix.We use the Grammatrix δN�δN as a Lagrangemulti-
plier to enforce the constraint δY�δY � T IT and normalize
by T 2:

min
Y∈Rd×T+

max
N∈Rm×T

1

T 2 Tr
[
−δY�δYδX�δX

+ δN�δN(δY�δY − T IT )
]

subject to Y = FX.

In the above objective, the terms 1
T δYδX� and 1

T δNδY�,
respectively, encode sample covariances between the activ-
ity vectors yt and xt , and between the activity vectors nt and
yt . These covariance matrices are a function of the entire
dataset, so they cannot be computed in the online setting.
Therefore, to derive an online algorithm, we encode the sam-
ple covariances in synaptic weight matricesWXY andWY N

by substituting in with the Legendre transforms

− 1

T 2 Tr(δY�δYδX�δX)

= min
WXY∈Rd×k

{
− 2

T
Tr(δY�WXY δX) + Tr(WXYW�

XY )

}

1

T 2 Tr(δN�δNδY�δY)

= max
WY N∈Rd×k

{
2

T
Tr(δN�WY N δY) − Tr(WY NW�

Y N )

}
.

The above equivalences can be readily justified by differ-
entiating right-hand sides of the above equations with respect
toWXY andWY N and noting the optima are achieved when
WXY = 1

T δYδX� and WY N = 1
T δNδY�. Substituting in

with the Legendre transforms results in the following objec-
tive

min
Y∈Rd×T+

max
N∈Rd×T

min
WXY∈Rd×k

max
WY N∈Rm×d

L1(Y,N,WXY ,WY N )

subject to Y = FX,

where

L1(Y,N,WXY ,WY N ) := 1

T
Tr

(
2δN�WY N δY

−2δY�WXY δX − δN�δN
)

− Tr
(
WY NW�

Y N ) + Tr(WXYW�
XY

)
.

Since L1 is convex inWXY (resp.Y) and strongly concave
inN (resp.WY N ), L1 satisfies the saddle point property with
respect to WXY and N (resp. Y and WY N ), see appendix A
for a definition of the of saddle point property, so we can
interchange the order of optimization, as follows:

min
WXY∈Rd×k

max
WY N∈Rm×d

min
Y∈Rd×T+

max
N∈Rd×T
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L1(Y,N,WXY ,WY N ) subject to Y = FX. (5)

We first solve objective (5) in the offline setting. In
general, optimizing over (Y,N) is challenging due to the
constraint that Y be a nonnegative linear transformation of
X. In appendix B, we show that when the synaptic weights
WXY andWY N are at their optimal values, we can optimize
over (Y,N) by repeating the following projected gradient
descent steps until convergence:

Y ←
[
Y + γ

(
WXYX − W�

Y NN
)]

+ ,

N ← N + γ (WY NY − N) , (6)

where γ > 0 is a small step size and [·]+ denotes taking the
positive part elementwise, which ensures the nonnegativity
ofY. In the case the synaptic weightsWXY andWY N are not
at their optimal values,we repeat the above projected gradient
descent steps until convergence to obtain an approximation
of the optimal (Y,N). We then perform a gradient descent-
ascent step of the objective L1 with respect to WXY and
WY N :

WXY ← WXY + η

(
1

T
δYδX� − WXY

)
(7)

WY N ← WY N + η

(
1

T
δNδY� − WY N

)
. (8)

Here η > 0 is the learning rate forWXY and WY N .
Next, we solve the objective (5) in the online setting.

At each time step t , we approximate the optimization over
(yt ,nt ) by taking the following projected gradient descent
steps until convergence:

yt ← [yt + γ (WXY xt − WNYnt )]+,

nt ← nt + γ (WY Nyt − nt ), (9)

where we have defined WNY := W�
Y N . We then take

stochastic gradient descent-ascent steps in WXY and WY N

by replacing the averages in equations (7) and (8) with their
online approximations:

WXY ← WXY + η
(
(yt − yt )(xt − xt )� − WXY

)

WY N ← WY N + η
(
(nt − nt )(yt − yt )

� − WY N

)

WNY ← WNY + η
(
(yt − yt )(nt − nt )� − WNY

)
.

The symmetry of the updates forWNY andWY N ensures
that WNY = W�

Y N after each iteration provided the con-
straint holds at initialization; however, enforcing such a
symmetric initialization may not be biologically plausible.

In Appendix C, we show that we can relax this initializa-
tion constraint, which yields our first onlineNICA algorithm,
Algorithm 1.

Algorithm 1 Bio-NICA with interneurons
input mixtures {x1, . . . , xT }; parameters γ , η
initialize WXY , WY N , WNY , x0 = 0, y0 = 0, n0 = 0
for t = 1, 2, . . . , T do

yt ← 0
nt ← 0
repeat

yt ← [yt + γ (WXY xt − WNYnt )]+
nt ← nt + γ (WY Nyt − nt )

until convergence
xt ← xt−1 + 1

t (xt − xt−1)

yt ← yt−1 + 1
t (yt − yt−1)

nt ← nt−1 + 1
t (nt − nt−1)

WXY ← WXY + η((yt − yt )(xt − xt )� − WXY )

WNY ← WNY + η((yt − yt )(nt − nt )� − WNY )

WY N ← WY N + η((nt − nt )(yt − yt )
� − WY N )

end for

Algorithm 1 can be implemented in a single-layer network
with point neurons and indirect lateral connections medi-
ated by interneurons, Fig. 2, so we refer to the algorithm as
‘Bio-NICA with interneurons.’ The network consists of k
input neurons, d principal (output) neurons and m interneu-
rons. Since m ≥ d, Algorithm 1 requires a minimum of
2d neurons, which is 2/3 as many neurons as required by
the 2-layer network in (Pehlevan et al. 2017). Feedforward
synapses between the input and principal neurons encode the
weight matrixWXY and lateral synapses between the princi-
pal neurons (resp. interneurons) and the interneurons (resp.
principal neurons) encode the weight matrix WY N (resp.
WNY ). At each time step t , the k-dimensional mixture xt ,
which is represented by the k input neurons, is multiplied
by the weight matrix WXY , which yields the d-dimensional
projection WXY xt . This is followed by the fast recurrent
dynamics in equation (9). The equilibrium values of yt and
nt , respectively, correspond to the nonnegative output of the
principal neurons and the output of the interneurons.

We canwrite the elementwise synaptic updates as follows,

Wi j
XY ← Wi j

XY + η
(
(yit − yit )(x

j
t − x j

t ) − Wi j
XY

)
,

1 ≤ i ≤ d, 1 ≤ j ≤ k,

Wi j
NY ← Wi j

NY + η
(
(yit − yit )(n

j
t − n j

t ) − Wi j
NY

)
,

1 ≤ i ≤ d, 1 ≤ j ≤ m,

Wi j
Y N ← Wi j

Y N + η
(
(nit − nit )(y

j
t − y j

t ) − Wi j
Y N

)
,

1 ≤ i ≤ m, 1 ≤ j ≤ d,
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Fig. 2 Single-layer network with interneurons for implementing Algo-
rithm 1

where we recall that xt , yt and nt are the runningmeans of xt ,
yt and nt , respectively. We assume that each neuron stores
the running mean of its activity. Biologically, these means
could be represented at the pre- and postsynaptic terminals
by slowly changing calcium concentrations. From the ele-
mentwise updates, we see that the update for each synapse
is local in the sense that it only depends on variables that are
represented in the pre- and postsynaptic neurons.

4.2 Single-layer network with 2-compartmental
neurons and direct lateral connections

The derivation of the our online algorithm starting from
objective (4) is closely related to the derivation of the
single-layer networks with multi-compartmental neurons for
solving generalized eigenvalue problems (Lipshutz et al.
2020, 2021). To begin, we expand the square, drop terms
that do not depend on Z, and normalize by T 2:

min
Z∈Rd×T+

1

T 2 Tr
(
−2Z�ZX�C+

XXX + Z�ZZ�Z
)

. (10)

Next, we introduce synaptic weight matrices WXZ and
WZ Z in place of 1

T ZX
�C+

XX and 1
T ZZ

�, respectively, by
substituting in with the following Legendre transforms:

− 1

T 2 Tr(Z�ZX�C+
XXX)

= min
WX Z∈Rd×k

{
− 2

T
Tr(Z�WXZX) + Tr(WXZCXXW

�
XZ )

}

1

T 2 Tr(Z�ZZ�Z)

= max
WZ Z∈Sd++

{
2

T
Tr(Z�WZ ZZ) − Tr(W2

Z Z )

}
.

The above equivalences can be seen by taking partial
derivatives with respect to WXZ (resp. WZ Z ) and noting
the minimum (resp. maximum) is achieved when WXZ =
1
T ZX

�C+
XX (resp.WZ Z = 1

T ZZ
�). Substituting in with the

Legendre transforms results in the minimax objective:

min
Z∈Rd×T+

min
WX Z∈Rd×k

max
WZ Z∈Sd++

L2(Z,WXZ ,WZ Z ), (11)

where

L2(Z,WXZ ,WZ Z ) : = 2

T
Tr

(
Z�WZ ZZ − 2Z�WXZX

)
−

Tr
(
W2

Z Z − 2WXZCXXW�
XZ

)
.

Since the objective L2 is strongly convex in WXZ and
strongly concave inWZ Z , L2 satisfies the saddle point prop-
erty with respect to Z andWZ Z (see appendix A), so we can
interchange the order of optimization, as follows:

min
WX Z∈Rd×k

max
WZ Z∈Sd++

min
Z∈Rd×T+

L2(Z,WXZ ,WZ Z ). (12)

We first solve the minimax objective (12) in the offline
setting by minimizing L2 over Z and then taking gradient
descent-ascent steps in WXZ and WZ Z . The minimization
over Z can be approximated by repeating the following pro-
jected gradient descent steps until convergence:

Z ← [Z + γ (WXZX − WZ ZZ)]+,

where γ > 0 is a small step size. Next, having minimized
over Z, we perform a gradient descent-ascent step of the
objective function L2 with respect toWXZ and WZ Z :

WXZ ← WXZ + 2η

(
1

T
ZX� − WXZCXX

)
, (13)

WZ Z ← WZ Z + η

τ

(
1

T
ZZ� − WZ Z

)
. (14)

Here τ > 0 is the ratio between the learning rates for
WXZ andWZ Z , and η ∈ (0, τ ) is the learning rate forWXZ .
The upper bound η < τ ensures that WZ Z remains positive
definite given a positive definite initialization. To see this,
note that if WZ Z is positive definite and 0 < η < τ , then
the right-hand side of (14) is a strict convex combination of
a positive definite matrix and a positive semidefinite matrix,
so the right-hand side of (14) is positive definite. Therefore,
given a positive definite initialization,WZ Z remains positive
definite.

To solve the minimax objective (12) in the online setting,
we take stochastic gradient ascent-descent steps.At each time
step t , analogous to the offline setting, we first minimize over
the output zt by repeating the following projected gradient
descent steps until convergence:

zt ← [zt + γ (ct − WZ Zzt )]+, (15)
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where we have defined the projection ct := WXZxt . We
then take stochastic gradient descent-ascent steps in WXZ

and WZ Z . To this end, we replace the averages 1
T ZX

� and
1
T ZZ

� in equations (13) and (14) with their respective online
approximations (zt − zt )(xt − xt )� and (zt − zt )(zt − zt )�.
While we could approximate the matrix WXZCXX in the
online setting with WXZ (xt − xt )(xt − xt )�, this does not
lead to local learning rules. Instead, we observe that

WXZCXX = 1

T

T∑

t=1

WXZ (xt − 〈x〉)(xt − 〈x〉)�

= 1

T

T∑

t=1

(ct − 〈c〉)(xt − 〈x〉)�,

and replace WXZCXX with the online approximation (ct −
ct )(xt − xt )�. This yields our second online algorithm for
NICA, Algorithm 2.

Algorithm 2 Bio-NICA with 2-compartmental neurons
input mixtures {x1, . . . , xT }; parameters γ , η, τ
initialize WXZ , WZ Z , x0 = 0, c0 = 0
for t = 1, 2, . . . , T do

ct ← WXZxt
zt ← 0
repeat

zt ← [zt + γ (ct − WZ Z zt )]+
until convergence
xt ← xt−1 + 1

t (xt − xt−1)

ct ← ct−1 + 1
t (ct − ct−1)

WXZ ← WXZ + 2η(ztx�
t − (ct − ct )(xt − xt )�)

WZ Z ← WZ Z + η
τ
(ztz�

t − WZ Z )

end for

Algorithm 2 can be implemented in a single-layer network
with 2-compartmental neurons anddirect lateral connections,
Fig. 3, so we refer to the algorithm as ‘Bio-NICA with 2-
compartmental neurons.’ The network consists of k input
neurons and d output neurons, which is 1/3 as many neu-
rons as required by the 2-layer network in (Pehlevan et al.
2017). Each output neuron has a dendritic compartment and
a somatic compartment. Feedforward synapses between the
input and output neurons encode the weight matrix WXZ

and recursive lateral synapses between the output neurons
encode the weight matrix −WZ Z . At each time step t , the
k-dimensional mixture xt , which is represented by the input
neurons, is multiplied by the weight matrix WXZ , which is
encoded by the feedforward synapses connecting the input
neurons to the output neurons. This yields the d-dimensional
projection ct = WXZxt , which is computed in the dendritic
compartments of the output neurons and then propagated
to their somatic compartments. This is followed by the fast

Fig. 3 Single-layer network with 2-compartmental neurons for imple-
menting Algorithm 2

recurrent neural dynamics in equation (15). The equilibrium
value of zt corresponds to the nonnegative somatic activity
of the output neurons.

The elementwise synaptic updates are as follows,

Wi j
X Z ← Wi j

X Z + 2η
(
zit x

j
t − (cit − cit )(x

j
t − x j

t )
)

,

1 ≤ i ≤ d, 1 ≤ j ≤ k,

Wi j
Z Z ← Wi j

Z Z + η

τ

(
zit z

j
t − Wi j

Z Z

)
,

1 ≤ i, j ≤ d,

where we recall that xt and ct are the running means of xt
and ct , respectively. We assume that the input neurons and
output neurons, respectively, store the running means xt and
ct . Thus, we see that the update for each synapse is local; that
is, the update depends only on variables that are represented
in the pre- and postsynaptic neurons.

5 Numerical experiments

We evaluated Algorithms 1 and 2 on synthetic and real
datasets and compare their performance to 2 state-of-the-art
online NICA algorithms: Nonnegative PCA (Plumbley and
Oja 2004) and 2-layer NSM (Pehlevan et al. 2017). Nonnega-
tive PCA requires (noncentered) pre-whitened inputs, which
we implemented offline. To quantify the performance of the
algorithms, we use the mean-squared error,

error(t) = 1

td

t∑

t ′=1

|st ′ − Pyt ′ |2,

where P is the permutation matrix that minimizes the error
at the final time point. For detailed descriptions of our imple-
mentations, seeAppendixD. The evaluation code is available
at https://github.com/flatironinstitute/bio-nica.
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5.1 Mixture of sparse random uniform sources

We first compare the algorithms on a synthetic dataset gen-
erated by independent and identically distributed samples.
Following Pehlevan et al. (2017), each source sample was set
to zero with probability 1/2 or sampled uniformly from the
interval (0,

√
48/5) with probability 1/2. We used random

square mixing matrices whose elements were independent
standard normal random variables. In Fig. 4, we plot the per-
formance of each algorithm on mixtures of d-dimensional
sources, for d = 3, 5, 7, 10.

5.2 Mixture of natural images

We apply the NICA algorithms to the problem of recovering
images from their mixtures, see Fig. 5 (left). Three image
patches of size 252 × 252 pixels were chosen from a set
of images of natural scenes (Hyvärinen and Hoyer 2000)
previously used in (Hyvärinen and Oja 2000; Plumbley and
Oja 2004; Pehlevan et al. 2017). Each image is treated as
one source, with the pixel intensities (shifted and scaled to
be well-grounded and have unit variance) representing the
2522 = 63504 samples. The source vectors were multiplied
by a random 3× 3 mixing matrix to generate 3-dimensional
mixtures, which were presented to the algorithms 5 times
with a randomly permuted order in each presentation. In
Fig. 5 (right), we show the performance of each algorithm.
To generated the recovered images in Fig. 5 (left), we take the
outputs of Algorithms 1 and 2 during the final presentation

Fig. 4 Performance of algorithms when presented with mixtures of
sparse random uniform sources, in terms of permutation error. The lines
and shaded regions denote themeans and 90% confidence intervals over
10 runs

of the mixtures and invert the permutation that was applied
to the mixtures in the final presentation.

6 Discussion

In this work, we derived 2 algorithms for NICA, each of
which can be implemented by biologically plausible single-
layer networks.Our networks, respectively, use 2/3 and 1/3 as
many neurons as the 2-layer biologically plausible network
derived in (Pehlevan et al. 2017). The wiring diagrams of
both networks—feedforward connections with lateral recur-
rent connections or feedforward connections with indirect
lateral recurrent connections mediated by interneurons—are
common motifs in neural systems.

We speculate that such circuits are useful for understand-
ing early odor adaptation in olfactory systems. As mentioned
earlier, NICA is particularly relevant in olfaction because
concentrations of odorants are both additive and nonnega-
tive. Moreover, the vertebrate olfactory bulb has been shown
to perform pattern separation (Friedrich and Laurent 2001;
Gschwend et al. 2015); that is, distinct odors (i.e., sources)
that activate overlapping sets of olfactory receptor neurons
will activate non-overlapping sets of neurons in the olfactory
bulb. Pattern separation is closely related to blind source sep-
aration, so the algorithms developed here may be useful for
understanding pattern separation in the olfactory bulb.

Our numerical experiments suggest that Algorithm 1 is
outperformed (in terms of convergence speed) by Algorithm
2. While Algorithm 2 converges faster than Algorithm 1,
it requires tuning an extra hyperparameter τ . In addition,
both our algorithms are outperformed by Nonnegative PCA
and the 2-layer NSM network. However, direct comparison
between our algorithms and the competing algorithms is not
entirely fair because Nonnegative PCA requires prewhitened
inputs and its neural network implementation does not use
local learning rules, and the 2-layer NSM network requires
more neurons. Our algorithms perform both the whitening
and the rotation steps in a single layer, which leads to a trade-
off in performance. Therefore, the ‘best’ algorithm for the
application of interest will depend on the relative importance
of convergence speed versus minimizing the total number of
neurons.

Finally, we do not prove convergence guarantees forAlgo-
rithms 1 and 2. In general, establishing theoretical guarantees
for gradient descent-ascent problems is challenging and is
further complicated by the non-smoothness of the projected
gradient descent steps in Algorithms 1 and 2.
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Fig. 5 Performance of algorithmswhen presentedwithmixtures of nat-
ural images. The left image shows the sources, mixtures, and recovered
sources (from Algorithms 1 and 2). The right plot shows the perfor-

mance of the algorithms in terms of permutation error. The lines and
shaded regions denote the means and 90% confidence intervals over 10
runs
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A Saddle point property

Here we recall the following minmax property for a function
that satisfies the saddle point property (Boyd and Vanden-
berghe 2004, section 5.4).

Theorem 1 Let V ⊆ R
n, W ⊆ R

m and f : V × W → R.
Suppose f satisfies the saddle point property; that is, there
exists (a∗,b∗) ∈ V × W such that

f (a∗,b) ≤ f (a∗,b∗) ≤ f (a,b∗),
for all (a,b) ∈ V × W .

Then

min
a∈V max

b∈W f (a,b) = max
b∈W min

a∈V f (a,b) = f (a∗,b∗).

B Optimization over neural activity matrices
(Y,N) in the derivation of Algorithm 1

In this section, we show that whenWXY andWY N are at their
optimal values, the optimal neural activity matrices (Y,N)

can be approximated via projected gradient descent. We first
compute that optimal values of WXY and WY N .

Lemma 1 Suppose (W∗
XY ,W∗

Y N ,Y∗,N∗) is anoptimal solu-
tion of objective (5). Then

W∗
XY = PA�, W∗,�

Y NW
∗
Y N = PA�AP�,

for some permutation matrix P.

Proof From (Pehlevan et al. 2017, Theorem 3), we know that
every solution of the objective

arg min
Y∈Rd×T

− Tr(δY�δYδX�δX)

subject to δY�δY � T IT and Y = FX, (16)

is of the form Y = FX, where F is a whitening matrix. In
particular, sinceY = FAS and S also has identity covariance
matrix,Y is an orthogonal transformation of S. Furthermore,
since S is well grounded, by (Plumbley 2002, Theorem 1),
Y is nonnegative if and only if FA is a permutation matrix.
Therefore, every solution Y∗ of the objective

arg min
Y∈Rd×T+

− Tr(δY�δYδX�δX)

subject to δY�δY � T IT and Y = FX, (17)

is of the form Y∗ = PX for some permutation matrix P. In
addition, differentiating the expression

−Tr(δY�δYδX�δX + δN�δN(δY�δY − T IT )), (18)
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with respect to δY and setting the derivative equal to zero,
we see that the at the optimal value, δN∗,�δN∗ = δX�δX =
δS�A�AδS.

Differentiating L1 with respect toWXY andWNY , we see
that the optimal values for the synaptic weight matrices are
achieved atWXY = 1

T δYδX� andWY N = 1
T δNδY�. Thus,

W∗
XY = 1

T
δY∗δX� = 1

T
PδSδS�A� = PA�,

and

W∗,�
Y NW∗

Y N = 1

T 2 δYδN∗,�δN∗δY�

= 1

T 2PδSδS�A�AδSδS�P� = PA�AP�.

��

Next, we show that when WXY and WY N are at their
optimal values, the optimal (Y∗,N∗) can be approximated
by running the projected gradient dynamics in Eq. (6).

Lemma 2 Suppose WXY = PA� and W�
Y NWY N = PA�

AP� for some permutation matrix P. Then

Y∗ = (W�
Y NWY N )−1WXYX = PS, N∗ = WY NY∗. (19)

is a solution of the minmax problem

min
Y∈Rd×T+

max
N∈Rm×T

2

T
Tr

(
δN�WY N δY

− δY�WXY δX − δN�δN
)

s.t. Y = FX. (20)

In particular, (Y∗,N∗) is the unique solution of the minmax
problem

min
Y∈Rd×T+

max
N∈Rm×T

2

T
Tr

(
N�WY NY − Y�WXYX − N�N

)
,

(21)

which can be approximated by running the projected gradient
dynamics in Eq. (6).

Proof We first relax the condition that Y be a nonnegative
linear transformation ofX and consider the minmax problem

min
Y∈Rd×T

max
N∈Rd×T

2

T
Tr

(
δN�WY N δY

− δY�WXY δX − δN�δN
)
.

After differentiating with respect to δY and δN, we see that
this objective is optimized when the centered matrices δY
and δN are given by

δY = (W�
Y NWY N )−1WXY δX, δN = WY N δY.

Next, we see that the above relations for the centered
matrices hold when Y and N are given by Eq. (19), where
we have used the fact that WXY = PA� and W�

Y NWY N =
PA�AP�. Note that Y is a linear transformation of X and Y
is nonnegative since it is a permutation of the nonnegative
sources. It follows that (Y,N) is also a solution to the con-
strained minmax problem (20). Finally, differentiating the
objective in Eq. (21) with respect toY andN, we see that the
optimal Y and N are again given by Eq. (19). ��

C Decoupling the interneuron synapses

The NICA algorithm derived in Sect. 4.1 requires the
interneuron-to-output neuron synapticweightmatrixWNY to
be the transpose of the output neuron-to-interneuron synap-
tic weight matrix WY N . Enforcing this symmetry via a
centralized mechanism is not biologically plausible and is
commonly referred to as the weight transport problem.

Here, we show that the symmetry of the 2 weights asymp-
totically follows from the learning rules in Algorithm 1, even
when the symmetry does not hold at initialization. LetWNY ,0

andWY N ,0 denote the initial values ofWNY andWY N . Then,
in view of the updates rules in Algorithm 1, the difference
WNY − W�

Y N after t updates is given by

WNY − W�
Y N = (1 − η)t (WNY ,0 − W�

Y N ,0).

In particular, the difference decays exponentially.

DDetails of numerical experiments

The simulations were performed on anApple iMacwith a 2.8
GHzQuad-Core Intel Core i7 processor. For each of the algo-
rithms that we implement, we use a time-dependent learning
rate of the form:

ηt = η0

1 + γ t
. (22)

To choose the parameters, we perform a grid search over
η0 ∈ {10−1, 10−2, 10−3, 10−4} and over γ ∈ {10−2, 10−3,

10−4, 10−5, 10−6, 10−7}. In Table 1 we report the best per-
forming hyperparameters we found for each algorithm. We
now detail our implementation of each algorithm.
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Table 1 Optimal
hyperparameters used for
Algorithm 1, Algorithm 2,
2-layer NSM, and Nonnegative
PCA

Alg. 1 (η0, γ ) Alg. 2 (η0, γ, τ ) 2-layer NSM (η0, γ ) NPCA (η0, γ )

d = 3 (10−2, 10−3) (10−1, 10−2, 0.8) (10−1, 10−7) (10−2, 10−5)

d = 5 (10−2, 10−5) (10−2, 10−2, 0.05) (10−1, 10−6) (10−1, 10−2)

d = 7 (10−2, 10−4) (10−3, 10−4, 0.05) (10−1, 10−6) (10−2, 10−6)

d = 10 (10−2, 10−3) (10−3, 10−4, 0.03) (10−1, 10−6) (10−2, 10−5)

Images (10−3, 10−6) (10−2, 10−4, 0.5) (10−1, 10−6) (10−3, 10−5)

1. Bio-NICA with interneurons (Algorithm 1): The neu-
ral outputs were computed using the quadratic convex
optimization functionsolve_qp from the Python pack-
age quadprog. After each iteration, we checked if any
output neuron had not been active up until that iteration.
If so, we flipped the sign of its feedforward inputs. In
addition, if the norm of one of the row vectors of WXY

fell below 0.1, we would replace the row vector with a
random vector to avoid the row vector becoming degen-
erate, and if a singular value ofWXY ,WY N orWNY fell
below 0.01, we replaced the singular value with 1 (we
checked every 100 iterations).

2. Bio-NICAwith2-compartmental neurons (Algorithm
2):The neural outputswere computed using the quadratic
convex optimization function solve_qp from the
Pythonpackagequadprog.Weused the time-dependent
learning rate of Eq. (22) and included τ ∈ {0.01, 0.03,
0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 3} in the grid search to
find the best performance. After each iteration, we
checked if any output neuron had not been active up until
that iteration. If so, we flipped the sign of its feedfor-
ward inputs. In addition, if an eigenvalue of WZ Z fell
below 0.01, we replaced the eigenvalue with 1 to prevent
WZ Z from becoming degenerate (we checked every 100
iterations).

3. 2-layer NSM: We implemented the algorithm in Pehle-
van et al. (2017) with time-dependent learning rates.
For the whitening layer, we used the optimal time-
dependent learning rate reported inPehlevan et al. (2017):
ζt = 0.01/(1 + 0.01t). For the NSM layer, we used the
time-dependent learning rate of Eq. (22). To compute
the neuronal outputs, we used the quadratic convex opti-
mization function solve_qp from the Python package
quadprog. After each iteration, we checked if any out-
put neuron had not been active up until that iteration. If
so, we flipped the sign of its feedforward inputs.

4. Nonnegative PCA (NPCA): We use the online ver-
sion given in Plumbley and Oja (2004). The algorithm
assumes the inputs are noncentered and whitened. We
performed the noncentered whitening offline. After each
iteration, we checked if any output neuron had not been
active up until that iteration. If so, we flipped the sign of
its feedforward inputs.
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