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Abstract

To adapt to their environments, animals learn associations between sensory stimuli and

unconditioned stimuli. In invertebrates, olfactory associative learning primarily occurs in the

mushroom body, which is segregated into separate compartments. Within each compart-

ment, Kenyon cells (KCs) encoding sparse odor representations project onto mushroom

body output neurons (MBONs) whose outputs guide behavior. Associated with each com-

partment is a dopamine neuron (DAN) that modulates plasticity of the KC-MBON synapses

within the compartment. Interestingly, DAN-induced plasticity of the KC-MBON synapse is

imbalanced in the sense that it only weakens the synapse and is temporally sparse. We pro-

pose a normative mechanistic model of the MBON as a linear discriminant analysis (LDA)

classifier that predicts the presence of an unconditioned stimulus (class identity) given a KC

odor representation (feature vector). Starting from a principled LDA objective function and

under the assumption of temporally sparse DAN activity, we derive an online algorithm

which maps onto the mushroom body compartment. Our model accounts for the imbalanced

learning at the KC-MBON synapse and makes testable predictions that provide clear con-

trasts with existing models.

Author summary

To adapt to their environments, animals learn associations between sensory stimuli (e.g.,

odors) and unconditioned stimuli (e.g., sugar or heat). In flies and other insects, olfactory

associative learning primarily occurs in a brain region called the mushroom body, which

is partitioned into multiple compartments. Within a compartment, neurons that represent

odors synapse onto neurons that guide behavior. The strength of these synapses is modu-

lated by a dopamine neuron that responds to one type of unconditioned stimuli (e.g.,

sugar), which implicates these synapses as a biological substrate for associative learning in

insects. Modifications of these synapses is imbalanced in the sense that dopamine-induced

modifications only weaken the synapses and are temporally sparse. In this work, we pro-

pose a simple mechanistic model of learning in the mushroom body that accounts for this
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imbalanced learning. Our model is interpretable as implementing an algorithm for linear

discriminant analysis, a classical statistical method for linearly separating feature vectors

that belong to different classes. Our model makes testable predictions that provide clear

contrasts with existing models.

Introduction

Behavioral responses of animals are shaped in part by learned associations between sensory sti-

muli (e.g., odors) and unconditioned stimuli (e.g., sugar, heat or electric shock). A challenge in

neuroscience is to understand the neural mechanisms that underlie associative learning. In

invertebrates, the mushroom body is a well-studied brain region that plays a central role in

olfactory associative learning [1–4]. The goal of this work is to propose a normative, mechanis-

tic model of associative learning in the mushroom body that accounts for experimental obser-

vations and provides clear contrasts with existing models.

The mushroom body is segregated into functionally independent compartments [5], Fig 1.

Within each compartment, Kenyon cells (KCs), which encode sparse odor representations [6],

form synapses with the dendrites of mushroom body output neurons (MBONs), whose out-

puts guide learned behavior [7]. Associated with each compartment is a single Dopamine neu-

ron (DAN) that responds to an unconditioned stimulus [8, 9], and projects its axon into the

mushroom body compartment where it innervates the KC-MBON synapses to modulate plas-

ticity, implicating the KC-MBON synapse as the synaptic substrate for associative learning in

invertebrates.

Experimental evidence suggests that learning at the KC-MBON synapse is imbalanced in

the sense that DAN-induced plasticity is one-sided and temporally sparse. In particular, co-

activation of a KC and the DAN weakens the KC-MBON synapse (see Fig 1, right) and DAN-

Fig 1. A simplified schematic of a mushroom body compartment. In both the left and right panels, the mushroom body compartment, indicated by

the shaded box, is innervated by the axons of multiple KCs, the dendrites from one MBON and the axon terminals of one DAN. The bi-colored circles

at the intersections of the KC axons and the MBON dendrites denote the KC-MBON synapses. Faintly shaded cell bodies indicate inactive neurons and

boldly shaded cell bodies indicate active neurons. In the left panel, the DAN is inactive. In the right panel, the DAN is active and co-activation of the

KCs and the DAN weakens the associated KC-MBON synapses (as illustrated by the smaller synapses).

https://doi.org/10.1371/journal.pcbi.1010864.g001
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induced plasticity is independent of the MBON activity [5]. This suggests that DAN-induced

plasticity is one-sided and another mechanism such as homeostatic plasticity is responsible for

strengthening the KC-MBON synapse. Furthermore, since each DAN responds to one type of

unconditioned stimulus [2], which only constitutes a small fraction of all stimuli, the DAN

activity is temporally sparse.

In this work, we propose a normative, mechanistic model of associative learning in the

mushroom body that accounts for the imbalanced learning. We model each MBON as a linear

discriminant analysis (LDA) classifier, which predicts if an associated unconditioned stimulus

is present (the class label) given a KC odor representation (the feature vector). Under this

interpretation, the KC-MBON synapses and an MBON bias term define a hyperplane in the

high-dimensional space of KC odor representations that separates odor representations associ-

ated with the unconditioned stimulus from all other odor representations, Fig 2.

Here, ‘normative’ refers to the fact that our mechanistic model is interpretable as an algo-

rithm for optimizing an LDA objective. The normative approach is top-down in the sense that

first the circuit objective is proposed and then an optimization algorithm is derived and com-

pared with known physiology. There are several advantages to this approach. First, it directly

relates the circuit objective to its mechanism; for example, neural activities and synaptic weight

updates are interpretable as steps in an algorithm for solving a relevant circuit objective. Sec-

ond, the approach distills down what aspects of the physiological are essential for optimizing

the circuit objective and what aspects are not captured by the objective. Third, normative mod-

els are often analytically tractable, which allows them to be analyzed for any input statistics

without resorting to exhaustive numerical simulation.

To derive our algorithm, we start with a convex objective for LDA (in terms of the

KC-MBON synaptic weights). The objective can be optimized in the offline setting by taking

gradient descent steps with respect to the KC-MBON synaptic weights. To obtain an online

Fig 2. Linear separation of odors in the space of KC activities. Left: Illustration of the hyperplane H ¼ fx : w � x ¼ bg (dashed teal line) in the space

of KC activities that separates conditioned odor responses from neutral odor responses. Each light red (resp. blue) dot denotes the KC response to a

conditioned (resp. neutral) odor. The teal arrow denotes the vector of KC-MBON synaptic weights w, which is translated to show that it is orthogonal

to the hyperplane H. Right: Co-activation of the KCs and the DAN weakens the synaptic weights w. The KC activities xt are denoted by the dark red dot

with black border. The change of the synaptic weights Δw is in the direction −xt. The hyperplane H rotates to remain orthogonal to w. The change in

bias Δb, which translates the hyperplane, is not depicted.

https://doi.org/10.1371/journal.pcbi.1010864.g002
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algorithm that accounts for the imbalanced learning, we take advantage of the fact that DAN

activity is temporally sparse to obtain online approximations of the input statistics. Finally, we

show numerically that our algorithm performs well even when DAN activity is not temporally

sparse.

Our model makes testable predictions that are a direct result of the learning imbalance.

First, our model predicts that DAN-induced plasticity at the KC-MBON synapse is sensitive to

the time elapsed since the DAN was last active. Second, our model predicts that if the DAN is

never active, then the KC-MBON synapses adapt to align with the mean KC activity (normal-

ized by the covariance of the KC activity).

Results

LDA model of the mushroom body compartment

We consider a simplified mushroom body compartment that consists of n KC axons, the axon

terminals from one DAN and the dendrites of one MBON, Fig 1. At each time t = 1, 2, . . ., the

vector xt 2 R
n

encodes the KC activities and the scalar yt 2 {0, 1} indicates whether the DAN

is active (yt = 1) or inactive (yt = 0). If the DAN is active, we refer to xt as a conditioned odor
response, whereas if the DAN is inactive, we refer to xt as a neutral odor response. We assume

the DAN activity is temporally sparse, which can be expressed mathematically as π1� 1,

where π1 ≔ hytit is the fraction of time that the DAN is active.

In our model, the MBON is a linear classifier that predicts the DAN activity yt (class label)

given the KC activities xt (feature vector). Let w 2 Rn
be a synaptic weight vector whose ith

component represents the strength of the synapse between the ith KC and the MBON. At each

time t, the KC activities xt are multiplied by the synaptic weight vector w to generate the total

input to the MBON, denoted ct≔ w � xt. The output (firing rate) of the MBON is given by

zt ≔ maxðct � b; 0Þ;

where b represents the ‘bias’ of the MBON; that is, the threshold below which the MBON does

not fire. Under this interpretation, the KC-MBON synapses w and MBON bias b define a

hyperplane H :¼ fx 2 Rn : w � x ¼ bg in the n-dimensional space of KC activities that sepa-

rates conditioned odor responses from neutral odor responses, Fig 2. In this case, zt> 0 (resp.

zt = 0) corresponds to the prediction yt = 0 (resp. yt = 1). In other words, the MBON is a linear

classifier that is active when predicting there is no unconditioned stimulus and inactive when

predicting there is an unconditioned stimulus, which is consistent with experimental observa-

tions [2].

We derive learning rules for the KC-MBON synaptic weights w (and bias b) that solve an

LDA objective and are consistent with experimental observations [2, 5]. LDA is popular linear

classification method that is optimal under the assumption that the neutral odor responses

and conditioned odor responses are Gaussian with common covariance matrix, but works well

in practice even when these assumptions do not hold [10].

Our starting point is the convex LDA objective

min
w

LðwÞ; LðwÞ≔ � w � ðμ0 � μ1Þ þ
1

2
w>Σw; ð1Þ

where μ0 and μ1 denote the means of the neutral odor responses and conditioned odor

responses, respectively, and S denotes the covariance of the neutral odor response. In the off-

line setting, we can minimize L(w) by taking gradient steps with respect to w:

Dw ¼ Zðμ0 � μ1 � ΣwÞ; ð2Þ
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where η> 0 is the step size. However, computing the means μ0, μ1 and covariance S requires

the MBON to have access to the entire sequence of inputs, which is an unrealistic assumption.

To derive our online algorithm, we replace the averages μ0, μ1 and S in Eq 2 with online

estimates. When the DAN is inactive (yt = 0), we update the KC-MBON weights w according

to the homeostatic plasticity rule

yt ¼ 0 : Dw ¼ Zðμ0;t � ðct � ztÞðxt � μ0;tÞÞ; ð3Þ

where μ0,t denotes the running estimate of the mean neutral odor response and zt denotes the

running estimate of the mean total MBON input ct conditioned on the DAN being inactive.

Here, μ0,t and (ct − zt) (xt − μ0,t) are online estimates of μ0 and S, respectively (see Methods

section). The running means μ0,t and zt can be represented by biophysical quantities such as

calcium concentrations at the pre- and postsynaptic terminals of the KC-MBON synapses.

When the DAN is active, we update the KC-MBON weights w according to the following

DAN-induced plasticity rule

yt ¼ 1 : Dw ¼ � Z‘t� 1xt; ð4Þ

where ℓt−1 denotes the time elapsed since the last time the DAN was active; see Fig 2 (right) for

a geometric interpretation of the plasticity rule. The update in Eq 4 is in line with experimental

evidence showing that DAN-induced plasticity is independent of the MBON activity zt and

co-activation of the KCs and the DAN reduces the strength of the synapses between the KCs

and the MBON [5]. Biologically, the scalar ℓt−1 can be represented as the sensitivity of the

KC-MBON synapses to DAN-induced plasticity. Assuming the conditioned odor response is

independent of the time elapsed between DAN activations, then on average, the update in Eq 4

is approximately equal to −ημ1, see Methods section. Therefore, the updates in Eqs 3–4

together account for all three terms in the offline update in Eq 2. The full model, including the

bias updates (see Methods section), is summarized in Algorithm 1.

Algorithm 1 LDA in the mushroom body compartment
input: (x1,y1), . . . ,(xT,yT)
initialize: w = (w1, . . . ,wn), b = 0, ℓ0 = 1, η > 0
for t = 1, 2, . . ., T do
ct  w � xt
zt  max(ct − b, 0)
if yt = 0 then

μ0;t  μ0;t� 1 þ
1

t ðxt � μ0;t� 1Þ

zt  zt� 1 þ
1

t ðct � zt� 1Þ

b bþ 1

t
1

2
ct � b

� �

w  w + η(μ0,t − (ct − ζt)(xt − μ0,t))
ℓt  ℓt−1 + 1

else if yt = 1 then
b bþ 1

t
1

2
‘t� 1ct � log‘t� 1 � b

� �

w  w − ηℓt−1xt
ℓt  1

end if
end for

Algorithm 1 only has one hyper-parameter—the learning rate η> 0—which corresponds

to timescale for learning in the mushroom body compartment. Hige et al. [5] showed that

mushroom body compartments have distinct timescales for learning, which can be modeled

by choosing different learning rates η> 0.
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Numerical experiments

Next, we test Algorithm 1 on synthetic and real datasets. We test our algorithm on inputs

when our assumption π1� 1 holds, but also on inputs when π1� 0.5. To evaluate our algo-

rithm, we measure the running accuracy of the projections zt over the previous min(100, t)
iterations, where the algorithm is accurate at the tth iterate if zt = 0 and yt = 1 or if zt> 0 and

yt = 0.

Synthetic dataset. We begin by evaluating Algorithm 1 on a synthetic dataset generated

by a mixture of 2 overlapping Gaussian distributions, so that the optimal accuracy is less than

1. The data points of the 2 classes are each drawn from a 2-dimensional mean with common

covariance. We simulate datasets of 105 data points using the same mean and covariance in

both classes but vary the frequency of class 1 samples encountered. We consider the cases π1 =

0.1, 0.2, 0.3, 0.4, 0.5. In Fig 3 (left) we plot the error and the accuracy of our model for varying

π1. Remarkably, while the derivation of Algorithm 1 relied on the fact that π1� 1, the algo-

rithm still performs well even when π1 = 0.5.

KC activities dataset. We test our model on KC activities reported in [11]. Campbell et al.

recorded odor-evoked KC responses in the fly mushroom body. The dataset we tested on con-

tains the responses of 124 KCs in a single fly to the presentation of 7 odors, see [11, Figure 1].

To ensure the KC responses are well conditioned, we add Gaussian noise with covariance �

I124, where � = 0.01. We apply Algorithm 1 to the KC dataset. We first consider the case that

odor 1 denotes the class 1 odor and odors 2–7 denote the class 0 odors, so p1 ¼
1

7
. We then

consider the cases that odors 1–2 (resp. 1–3) odors denote the class 1 odors and the remaining

odors denote the class 0 odors, so p1 ¼
2

7
(resp. p1 ¼

3

7
). In Fig 3 (right) we plot the error and

accuracy of our model for varying π1. Impressively, the modified algorithm performs well

(approximately 85% accuracy) even when the assumption π1� 1 is violated.

Competing MBONs. Using the KC activities dataset, we model 2 MBONs with competing

valences by running 2 instances of Algorithm 1 in parallel with different class assignments for

Fig 3. Performance of Algorithm 1. Accuracy of Algorithm 1 on the synthetic datasets (left) and the KC dataset (right). Each line denotes the mean accuracy over 10

runs. Each shaded region indicates the area between the minimum and maximum accuracy over 10 runs.

https://doi.org/10.1371/journal.pcbi.1010864.g003
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the odors. We consider the case that odor 1 is aversive, odor 7 is attractive and the remaining

odors are neutral. For MBON 1 (resp. MBON 2), we assume that odor 1 (resp. odor 7) denotes

the class 1 odor and odors 2–7 (resp. odors 1–6) denote the class 0 odors, so that MBON 1

(resp. MBON 2) activity promotes approach (resp. avoid) behavior. Let zi,t denote the output

of MBON i 2 {1, 2}. At each iterate t, if odor 1 (resp. odor 7, odors 2–6) is presented, then the

model is accurate if z1,t> 0 and z2,t = 0 (resp. z1,t = 0 and z2,t> 0, resp. z1,t> 0 and z2,t> 0),

and inaccurate otherwise. We then repeat the experiment two more times, but with odor 2

(resp. odor 3) labeled as aversive and odor 6 (resp. odor 5) as attractive. In Fig 4, we plot the

performance of the competing MBONs.

Discussion

Summary

In this work, we proposed a normative model of the mushroom body compartment that

accounts for imbalanced learning at the KC-MBON synapse. Testing our model on synthetic

and real datasets shows that it performs well under a variety of conditions. In our model,

DAN-induced plasticity at the KC-MBON synapse does not depend on the MBON activity,

but rather on the time elapsed since the last time the DAN was active. This aspect of our model

suggests testable predictions that provide clear contrasts with existing models of associative

learning in the mushroom body.

Model predictions

Prediction 1—In the absence of DAN activity, the KC-MBON synapses will align with the

mean KC activity normalized by the covariance of their activities. When presented with

Fig 4. Performance of competing MBONs. Accuracy of 2 parallel runs of Algorithm 1 on the KC dataset to classify

odors as aversive, attractive or neutral. Each line denotes the mean accuracy over 10 runs. Each shaded region indicates

the area between the minimum and maximum accuracy over 10 runs.

https://doi.org/10.1371/journal.pcbi.1010864.g004
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neutral odors, the synapses adapt according to the homeostatic update in Eq 3. Since this

update is equal to η(μ0 − Sw) on average (see Methods section), the KC-MBON synaptic

weights equilibrate at w = S−1μ0. Experimentally, this prediction could be tested by first pre-

senting a fly with neutral odors and simultaneously recording from multiple KCs and an

MBON. The weights can be estimated from the neural activities (using, e.g., [12]) and com-

pared with our prediction w = S−1μ0.

Prediction 2—DAN-induced plasticity is proportional to the time elapsed since the DAN

was last active. According to update in Eq 4, DAN-induced plasticity is proportional to the

time elapsed since the DAN was last active. Experimentally, this prediction could be tested by

presenting a fly with conditioned odors with different time intervals between presentations

and estimating the resulting change in the synaptic weights.

Relation to existing models

There are a number of existing computational models of associative learning in the mushroom

body [13–17], many of which are faithful to biophysical details and successfully capture impor-

tant computational principles underlying associative learning in the mushroom body (see, e.g.,

[15]). Through extensive numerical simulations, these computational models can explain a

number of phenomena. For example, Heurta and Nowotny [15] show that the organization of

the mushroom body supports fast and robust associative learning, Bazhenov et al. [16] show

that interactions between unsupervised and supervised forms of learning can explain how the

timescale of associative learning depends on experimental conditions, and Peng and Chittka

[17] show how complex forms of learning (e.g., peak shift) depend on different mechanistic

aspects of learning in the mushroom body. In this work, we propose a top-down normative

model of learning at the KC-MBON synapse, which contrasts with the bottom-up approach in

these works that build models closely tied to physiological evidence. In this way, the our model

is interpretable as an algorithm for optimizing a circuit objective and the output can be pre-

dicted analytically for any environmental condition without needing to resort to numerical

simulation. In addition, our normative model makes testable predictions that are in clear con-

trast with these models, providing a method for validating or invalidating our model.

In addition to these models, Bennett et al. [18] propose a reinforcement learning model of

the KC-MBON synapses as minimizing reinforcement prediction errors. They first consider a

model in which the reinforcement signal is computed as the difference between DAN activi-

ties, so their plasticity rule requires 2 DANs to innervate a single mushroom body compart-

ment, which is in contrast to experiment evidence showing that most compartments only

receive inputs from a single DAN [9]. To account for this experimental observation, they pro-

pose a heuristic modification that adds a constant source of synaptic potentiation, which can

be viewed as a form of homeostatic plasticity and is in line with experimental evidence. How-

ever, the modification is not normative and can fail to minimize prediction errors.

A significant difference between our model and these existing models is that DAN-induced

plasticity depends on ℓt−1, the time elapsed since the DAN was last active. In our model, the

variable ℓt−1 is critical for balancing homeostatic plasticity and DAN-induced plasticity. In S1

Appendix, we consider a modification of our algorithm in which ℓt−1 is replaced by a fixed

constant ℓ�.

Comparison of LDA to other linear classification methods

LDA is a linear classifier that is optimal under strict assumptions on the inputs, so it is worth

considering other linear classification methods such as logistic regression and support vector

machines (SVMs). Logistic regression is classical method for estimating the probability of one
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class versus another class. In terms of performance, there is evidence that there is not a sub-

stantial difference in the performance of logistic regression and LDA even when the assump-

tions for LDA are not met [19]. As a model of the insect mushroom body, we are unaware of

an online algorithm for logistic regression that maps onto the mushroom body compartment

and matches the experimental observations in [2, 5].

SVMs are flexible linear classifiers that do not make assumptions about the underlying data

distribution. Huerta et al. [13, 15] proposed models of the mushroom body that are closely

related to SVMs [20, 21]; however, the DAN-induced synaptic update rules depend on the

MBON activity, which is in contrast to recent experimental evidence [5].

Limitations

Our model is a dramatic simplification of the mushroom body focused on providing a norma-

tive account of learning at the KC-MBON synapse that can account for how balance between

DAN-induced plasticity and homeostatic plasticity is optimally maintained. Consequently,

our model does not account for a number of the physiological details. For example, in order to

implement an LDA algorithm, we do not sign-constrain the synaptic weight vector w, which

violates Dale’s law. In addition, we assume that the DAN activity is binary. In reality the DAN

may fire at different rates depending on the strength of the unconditioned stimulus and the fir-

ing rate may affect the DAN-induced plasticity. We can modify our model to allow yt to be any

nonnegative scalar and replace the update in Eq 4 with Δw = −ηℓt−1yt xt. However, in this case

the algorithm is not derived from an objective function for LDA and so it is more challenging

to understand the output. In addition to such simplifications, there are other features such as

feedback connections in the mushroom body that have been recently discovered and are rele-

vant for associative learning [7, 22], which are also not captured by our model.

Methods

Linear discriminant analysis

LDA is a statistical method for linear classification [23, section 4.3], which makes the following

simplifying assumption: the conditional probability distributions p(x|y = 0) and p(x|y = 1) are

both Gaussian with common full-rank n × n covariance matrix S; that is

pðxjy ¼ 0Þ � N ðμ0;ΣÞ; pðxjy ¼ 1Þ � N ðμ1;ΣÞ;

where μ0 and μ1 denote the means of the class 0 and class 1 feature vectors. In this case, the

optimal decision criteria for assigning class 0 (resp. class 1) to feature vector x is w � x > b
(resp. w � x< b), where

wopt :¼ Σ� 1ðμ0 � μ1Þ; bopt :¼
1

2
w � ðμ0 þ μ1Þ þ log

p1

p0

; ð5Þ

and πi denotes the probability that a samples belongs to class i, for i = 0, 1. In particular, the

hyperplane H ¼ fx 2 Rn : wopt � x ¼ boptg defines the optimal separation boundary for pre-

dicting whether a feature vector belongs to class 0 or class 1. While LDA assumes a specific

generative model, it performs well in practice even when the assumptions do not hold [10].

The optimal weights wopt can be expressed as the solution of the convex minimization prob-

lem in Eq 1, which we can solve for by taking the gradient descent steps (Eq 2). Formally, tak-

ing the step size η to zero in Eq 2 yields the linear gradient flow

_wðtÞ ¼ μ0 � μ1 � ΣwðtÞ;
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whose solution is given by

wðtÞ ¼ e� Σtwð0Þ þ ðIn � e� ΣtÞΣ� 1ðμ0 � μ1Þ:

In particular, we see that the solution w(t) converges exponentially to the optimal solution

wopt.

An online algorithm for imbalanced learning

In the online setting, the class means μ0, μ1 and the covariance S are not available. Instead, at

each time t the algorithm has access to the feature vector xt and class label yt. To derive our

online algorithm, we make online approximations of the offline quantities μ0, μ1 and S that

are based on the fact that the unconditioned stimuli are sparse in time, i.e., π1� 1, where we

recall that π1 denotes the proportion of conditioned odors. First, we note that we can rewrite

the sample class means

μ0 ¼
1

p0

hð1 � ytÞxtit; μ1 ¼
1

p1

hytxtit;

where π0 ≔ h1 − ytit� 1 is the fraction of odors that are neutral, and the sample covariance

Σ ¼ hð1 � ytÞðxt � μ0Þðxt � μ0Þ
>
it þ hytðxt � μ1Þðxt � μ1Þ

>
it:

Estimating the mean response to a neutral odor and the covariance. Since π0� 1, we

approximate

μ0 � hð1 � ytÞxtit; Σ � hð1 � ytÞðxt � μ0Þðxt � μ0Þ
>
it: ð6Þ

Therefore, in the online setting, we can keep a running estimate of μ0 and z≔ w � μ0� h(1 −
yt)ctit, where we recall that ct = w � xt, by performing the updates

μ0;t  μ0;t� 1 þ
1

t
ð1 � ytÞðxt � μ0;t� 1Þ; zt  zt� 1 þ

1

t
ð1 � ytÞðct � zt� 1Þ: ð7Þ

In view of Eq 6 and the definitions of ct and z, we can replace Sw with the online approxima-

tion

ð1 � ytÞðxt � μ0Þðxt � μ0Þ
>w ¼ ð1 � ytÞðct � ztÞðxt � μ0;tÞ: ð8Þ

We replace the first and third terms in the offline update in Eq 2, η(μ0 − Sw), with the online

estimate η(1 − yt)(μ0,t − (ct − zt)(xt − μ0,t)).

Estimating the mean response to a conditioned odor. To obtain an online approxima-

tion of μ1, we first note that 1

p1
is approximately equal to the average time elapsed between class

1 samples. To see this, let t1, t2, . . . denote the subset of times such that yt = 1. Then, letting t0 =

0, we have

1

p1

¼ lim
r!1

tr
r
¼ lim

r!1

1

r

Xr

j¼1

ðtj � tj� 1Þ:

Thus, in the online setting, when the jth class 1 sample is presented (i.e., yt = 1), we can use the

PLOS COMPUTATIONAL BIOLOGY An linear discriminant analysis model of the mushroom body

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010864 February 6, 2023 10 / 13

https://doi.org/10.1371/journal.pcbi.1010864


time elapsed since the last class 1 sample, tj − tj−1, as an online estimate of 1

p1
. Setting ℓ0 = 1 and

‘t ¼
‘t� 1 þ 1 if yt ¼ 0

1 if yt ¼ 1;

(

we see that at time t such that yt = 1, ℓt−1 denotes the time elapsed since the last class 1 sample,

so h‘t� 1jyt ¼ 1it ¼
1

p1
. Assuming that the variables ℓt−1 and xt are independent given yt = 1—

i.e., the KC representation xt of a conditioned odor is independent of the time elapsed since

the last conditioned odor ℓt−1—we see that μ1 = hℓt−1|yt = 1it hxt|yt = 1it = hℓt−1xt|yt = 1it. We

replace the second term in the offline update in Eq 2, −ημ1, with the online approximation

−ηytℓt-1xt.

Estimating the bias. To estimate the bias b, we note that because π0� 1 and
1

p1
� h‘t� 1jyt ¼ 1it

log
p1

p0

� log p1 � � logh‘t� 1jyt ¼ 1it � hlog ‘t� 1jyt ¼ 1it;

where the final inequality follows from the fact that log is concave and Jensen’s inequality

(with equality holding when the variance of ℓt−1 given yt = 1 is zero). Thus, assuming the

variance of the time elapsed between conditioned odors is small, we can estimate the bias b
in the online setting with the updates:

b  bþ
1

t
1

2
1 � yt þ ‘t� 1ytð Þw>xt � yt log ‘t� 1 � b

� �

:

Substituting these approximations into the offline update rules in Eq 2 yields our online

algorithm (Algorithm 1).

In view of Jensen’s inequality, if the variance of the time elapsed between conditioned odors

is large, then the bias b will be overestimated, meaning that the MBON will be less active than

optimal. In other words, irregular intervals between DAN activity biases the MBON to be less

active (i.e., predict that the unconditioned stimulus is present more often).

Details of numerical experiments

The experiments were performed on an Apple iMac with a 3.2 GHz 8-Core Intel Xeon W pro-

cessor. For each experiment, we used a learning rate of the form

Zt ¼
Z0

1þ gt
:

We chose the parameters η0 and γ by performing a grid search over η0 2 {1, 10−1, 10−2, 10−3,

10−4} and γ 2 {10−2, 10−3, 10−4, 10−5, 10−6}. The optimal parameters for the synthetic dataset

(resp. KC dataset) are η0 = 10−1 and γ = 10−3 (resp. η0 = 10−1 and γ = 10−4).

Supporting information

S1 Appendix. Comparison with a modified algorithm. We consider a modification of Algo-

rithm 1 in which the DAN-induced plasticity of the KC-MBON synapses does not depend on

the time elapsed since the last time the DAN was active.

(PDF)

PLOS COMPUTATIONAL BIOLOGY An linear discriminant analysis model of the mushroom body

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010864 February 6, 2023 11 / 13

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010864.s001
https://doi.org/10.1371/journal.pcbi.1010864


Acknowledgments

We are grateful to Lucy Reading-Ikkanda for creating Fig 1. We thank Yanis Bahroun, Siavash

Golkar, Jason Moore and Tiberiu Teşileanu for helpful feedback on an earlier draft of this

work.

Author Contributions

Conceptualization: David Lipshutz, Aneesh Kashalikar, Dmitri B. Chklovskii.

Data curation: David Lipshutz, Shiva Farashahi.

Formal analysis: David Lipshutz, Aneesh Kashalikar, Shiva Farashahi.

Investigation: David Lipshutz, Aneesh Kashalikar, Shiva Farashahi.

Methodology: David Lipshutz, Dmitri B. Chklovskii.

Project administration: David Lipshutz.

Software: David Lipshutz, Aneesh Kashalikar, Shiva Farashahi.

Supervision: David Lipshutz, Dmitri B. Chklovskii.

Validation: David Lipshutz.

Visualization: David Lipshutz.

Writing – original draft: David Lipshutz.

Writing – review & editing: David Lipshutz, Shiva Farashahi, Dmitri B. Chklovskii.

References
1. Heisenberg M. Mushroom body memoir: from maps to models. Nature Reviews Neuroscience. 2003; 4

(4):266–275. https://doi.org/10.1038/nrn1074 PMID: 12671643

2. Owald D, Waddell S. Olfactory learning skews mushroom body output pathways to steer behavioral

choice in Drosophila. Current Opinion in Neurobiology. 2015; 35:178–184. https://doi.org/10.1016/j.

conb.2015.10.002 PMID: 26496148

3. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The complete connec-

tome of a learning and memory centre in an insect brain. Nature. 2017; 548(7666):175. https://doi.org/

10.1038/nature23455 PMID: 28796202

4. Modi MN, Shuai Y, Turner GC. The Drosophila mushroom body: from architecture to algorithm in a

learning circuit. Annual Review of Neuroscience. 2020; 43:465–484. https://doi.org/10.1146/annurev-

neuro-080317-0621333 PMID: 32283995

5. Hige T, Aso Y, Modi MN, Rubin GM, Turner GC. Heterosynaptic plasticity underlies aversive olfactory

learning in Drosophila. Neuron. 2015; 88(5):985–998. https://doi.org/10.1016/j.neuron.2015.11.003

PMID: 26637800

6. Honegger KS, Campbell RA, Turner GC. Cellular-resolution population imaging reveals robust sparse

coding in the Drosophila mushroom body. Journal of Neuroscience. 2011; 31(33):11772–11785. https://

doi.org/10.1523/JNEUROSCI.1099-11.2011 PMID: 21849538

7. Eschbach C, Fushiki A, Winding M, Schneider-Mizell CM, Shao M, Arruda R, et al. Multilevel feedback

architecture for adaptive regulation of learning in the insect brain. bioRxiv. 2019; p. 649731.

8. Waddell S. Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in

Neurobiology. 2013; 23(3):324–329. https://doi.org/10.1016/j.conb.2013.01.005 PMID: 23391527

9. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, et al. The neuronal architecture of the mush-

room body provides a logic for associative learning. Elife. 2014; 3:e04577. https://doi.org/10.7554/eLife.

04577 PMID: 25535793

10. Michie D, Spiegelhalter DJ, Taylor CC, editors. Machine Learning, Neural and Statistical Classification.

Ellis Horwood; 1994.

PLOS COMPUTATIONAL BIOLOGY An linear discriminant analysis model of the mushroom body

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010864 February 6, 2023 12 / 13

https://doi.org/10.1038/nrn1074
http://www.ncbi.nlm.nih.gov/pubmed/12671643
https://doi.org/10.1016/j.conb.2015.10.002
https://doi.org/10.1016/j.conb.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26496148
https://doi.org/10.1038/nature23455
https://doi.org/10.1038/nature23455
http://www.ncbi.nlm.nih.gov/pubmed/28796202
https://doi.org/10.1146/annurev-neuro-080317-0621333
https://doi.org/10.1146/annurev-neuro-080317-0621333
http://www.ncbi.nlm.nih.gov/pubmed/32283995
https://doi.org/10.1016/j.neuron.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26637800
https://doi.org/10.1523/JNEUROSCI.1099-11.2011
https://doi.org/10.1523/JNEUROSCI.1099-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21849538
https://doi.org/10.1016/j.conb.2013.01.005
http://www.ncbi.nlm.nih.gov/pubmed/23391527
https://doi.org/10.7554/eLife.04577
https://doi.org/10.7554/eLife.04577
http://www.ncbi.nlm.nih.gov/pubmed/25535793
https://doi.org/10.1371/journal.pcbi.1010864


11. Campbell RA, Honegger KS, Qin H, Li W, Demir E, Turner GC. Imaging a population code for odor iden-

tity in the Drosophila mushroom body. Journal of Neuroscience. 2013; 33(25):10568–10581. https://doi.

org/10.1523/JNEUROSCI.0682-12.2013 PMID: 23785169

12. Linderman S, Stock CH, Adams RP. A framework for studying synaptic plasticity with neural spike train

data. Advances in Neural Information Processing Systems. 2014; 27.

13. Huerta R, Nowotny T, Garcı́a-Sanchez M, Abarbanel HDI, Rabinovich MI. Learning classification in the

olfactory system of insects. Neural Computation. 2004; 16(8):1601–1640. https://doi.org/10.1162/

089976604774201613 PMID: 15228747

14. Smith D, Wessnitzer J, Webb B. A model of associative learning in the mushroom body. Biological

Cybernetics. 2008; 99(2):89–103. https://doi.org/10.1007/s00422-008-0241-1 PMID: 18607623

15. Huerta R, Nowotny T. Fast and robust learning by reinforcement signals: explorations in the insect

brain. Neural Computation. 2009; 21(8):2123–2151. https://doi.org/10.1162/neco.2009.03-08-733

PMID: 19538091

16. Bazhenov M, Huerta R, Smith BH. A computational framework for understanding decision making

through integration of basic learning rules. Journal of Neuroscience. 2013; 33(13):5686–5697. https://

doi.org/10.1523/JNEUROSCI.4145-12.2013 PMID: 23536082

17. Peng F, Chittka L. A simple computational model of the bee mushroom body can explain seemingly

complex forms of olfactory learning and memory. Current Biology. 2017; 27(2):224–230. https://doi.org/

10.1016/j.cub.2016.10.054 PMID: 28017607

18. Bennett JE, Philippides A, Nowotny T. Learning with reinforcement prediction errors in a model of the

Drosophila mushroom body. Nature Communications. 2021; 12(1):1–14. https://doi.org/10.1038/

s41467-021-22592-4

19. Lei PW, Koehly LM. Linear discriminant analysis versus logistic regression: A comparison of classifica-

tion errors in the two-group case. The Journal of Experimental Education. 2003; 72(1):25–49. https://

doi.org/10.1080/00220970309600878
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