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An established normative approach for understanding the algorithmic basis of neural computation is to derive
online algorithms from principled computational objectives and evaluate their compatibility with anatomical and
physiological observations. Similarity matching objectives have served as successful starting points for deriving
online algorithms that map onto neural networks (NNs) with point neurons and Hebbian/anti-Hebbian plasticity.
These NN models account for many anatomical and physiological observations; however, the objectives have
limited computational power, and the derived NNs do not explain multicompartmental neuronal structures and
non-Hebbian forms of plasticity that are prevalent throughout the brain. In this article, we unify and generalize
recent extensions of the similarity matching approach to address more complex objectives, including a large class
of unsupervised and self-supervised learning tasks that can be formulated as symmetric generalized eigenvalue
problems or non-negative matrix factorization problems. Interestingly, the online algorithms derived from these
objectives naturally map onto NNs with multicompartmental neurons and local, non-Hebbian learning rules.
Therefore, this unified extension of the similarity matching approach provides a normative framework that
facilitates understanding multicompartmental neuronal structures and non-Hebbian plasticity found throughout
the brain.
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I. INTRODUCTION

Advances in theoretical neuroscience are often driven by
the development of normative frameworks that explain physi-
ological and anatomical observations from the perspective of
computational principles [1–11]. These top-down frameworks
start with computational objectives from which physiological
and anatomical implications are derived and compared with
experimental observations. In the context of understanding
the algorithmic basis of neural computation, this approach
involves starting with a computational objective, deriving an
online algorithm that can be implemented in a neural network
(NN), and comparing the NN model with experimental obser-
vations.

In a pioneering example of this approach, Oja [4] pro-
posed an online algorithm for principal component analysis
(PCA) [12], a popular unsupervised dimensionality reduction
method, which can be implemented in a point neuron (i.e.,
a neuron that only represents its scalar output) with Heb-
bian plasticity, Fig. 1 (left). Hebbian plasticity, named after
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Hebb [13], refers to synaptic updates that are proportional
to the product of the pre- and postsynaptic neural outputs.
Experimental evidence of Hebbian plasticity came with the
discovery of long-term potentiation [14,15], and since then
a variety of forms of Hebbian plasticity have been observed
[16]. Oja’s model of a point neuron thus offers a link be-
tween experimentally observed Hebbian plasticity and an
unsupervised learning objective. However, in the few decades
following Oja’s work, efforts to extend Oja’s approach to
extract multiple principal components resulted in NNs that
used nonlocal learning rules [17–19].

Building on Oja’s seminal work, Pehlevan and Chklovskii
et al. recently developed a normative framework to extract
multiple principal components using similarity matching ob-
jectives [10,20–23], which minimize the difference between
the similarity of the NN inputs and that of the NN outputs.
Starting from these objectives, they derived online algorithms
that map onto multichannel NNs with point neurons and
Hebbian plasticity. This normative framework proved useful
for linking unsupervised learning objectives to Hebbian plas-
ticity and several anatomical and physiological observations
[24–29]. However, the similarity matching objectives have
limited computational power, and the derived NNs cannot ex-
plain multicompartmental neuronal structures and other forms
of synaptic plasticity prevalent throughout the brain [30].

Most neurons in the brain have multicompartmental struc-
tures and employ intricate forms of non-Hebbian plasticity.
In particular, these neurons represent biophysical quantities
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FIG. 1. Left: Oja’s point neuron with inputs xt , synaptic weights
w, output zt = wxt , and Hebbian plasticity. Right: Multicom-
partment model of a pyramidal neuron with a separate distal
compartment (circular region) and a proximal compartment (triangu-
lar region). Feedback inputs xt target the distal portion of the apical
tuft to generate the current at = wxxt , which drives non-Hebbian
plasticity at the proximal synapses wy. Feed-forward inputs yt target
the proximal region to generate the current bt = wyyt . The output zt

is a function of the currents at and bt , and, depending on the model,
it is sometimes represented in a third compartment.

beyond their output, such as local dendritic currents, and these
quantities constitute key variables in the neurons’ synaptic
learning rules. For example, pyramidal neurons—the primary
excitatory neurons of the cortex capable of performing com-
plex computations [31]—receive inputs to their proximal and
distal dendrites from distinct neural populations and integrate
these inputs in separate compartments [32], Fig. 1 (right).
Integrated distal inputs generate calcium plateau potentials
that drive non-Hebbian plasticity in the proximal dendrites
[33]. What are the computational objectives that lead to these
more complex neuronal structures and intricate forms of non-
Hebbian plasticity?

In a series of recent works [34–38], we have extended the
similarity matching framework to include objectives for more
complex learning tasks. Examples include computational ob-
jectives for canonical correlation analysis (CCA), slow feature
analysis (SFA), independent component analysis (ICA), and
contrastive PCA* (cPCA*), which can be interpreted, respec-
tively, as linear instantiations of the following computational
principles: associative learning of multimodal inputs, learning
temporally invariant features, redundancy reduction, and con-
trastive learning. Interestingly, the algorithms derived from
these objectives naturally map onto NNs with multicompart-
mental neurons and local, non-Hebbian forms of plasticity.
Therefore, these works offer a potential normative account of
these anatomical and physiological observations.

In this article, we provide a unified framework that encom-
passes and generalizes these normative models of NNs with
multicompartmental neurons and non-Hebbian plasticity. In
particular, we derive an online algorithm for solving a large
class of symmetric generalized eigenvalue problems—which
includes CCA, SFA, ICA, and cPCA* as special cases—that
establishes a precise link between synaptic plasticity rules

and computational objectives. In one direction, this frame-
work can be used to derive NNs for solving other symmetric
generalized eigenvalue problems [39,40]. Conversely, given
an experimentally observed non-Hebbian synaptic plasticity
rule, this framework can potentially be used to predict a
guiding computational objective. Therefore, we believe this
unified framework will facilitate further development of NNs
for solving other relevant learning tasks and advance our
understanding of NNs with multicompartmental neurons and
non-Hebbian plasticity.

The remainder of this work is organized as follows. We
first review prior theoretical results on NNs with point neu-
rons and Hebbian plasticity (Sec. II) and experimental results
on multicompartmental neurons and non-Hebbian plasticity
(Sec. III). We then present a unified objective for solving
a large class of symmetric generalized eigenvalue problems
(Sec. IV). Starting from this objective, we derive an online
algorithm for solving the objective (Sec. V), and we show that
for several examples the algorithm maps onto NNs with multi-
compartmental linear neurons and non-Hebbian learning rules
(Sec. VI). Finally, by modifying the starting objective, we
transform the problem from a symmetric generalized eigen-
value problem to a non-negative matrix factorization problem,
resulting in NNs with rectified neural outputs (Sec. VII).

II. HEBBIAN NEURAL NETWORKS FOR UNSUPERVISED
DIMENSIONALITY REDUCTION

Early sensory processing significantly reduces the dimen-
sionality of the inputs [41,42]. For example, the human retina
is a highly convergent pathway with more than 100-fold
reduction in dimensionality from photoreceptors to retinal
ganglion cells [43]. Therefore, NNs that perform unsupervised
dimensionality reduction may be useful models of early sen-
sory processing.

A. Oja’s neuron for principal component analysis

In a seminal work, Oja [4] modeled a single neuron with
a PCA algorithm, Fig. 1 (left), which can be derived as a
stochastic gradient descent minimizing a reconstruction error
objective [44]. At each time point t the neuron receives n in-
puts, whose activities are encoded in the column vector xt . The
inputs are multiplied by the corresponding synaptic weights,
which are encoded in the row vector w, and summed to
generate the neuron’s scalar output zt = wxt . These synaptic
weights are then updated according to the following plasticity
rule, referred to as Oja’s rule:

w ← w + η
(
zt x�

t − z2
t w

)
,

where η > 0 denotes the learning rate for the synapses. After
multiple iterations, the synaptic weights w converge to the
principal eigenvector of the input covariance matrix CX :=
〈xt x�

t 〉 [4,45,46]. The first term in the synaptic update, zt x�
t ,

is the product of the pre- and postsynaptic activities, so it is
referred to as Hebbian plasticity. The term −z2

t w, which is
proportional to the synaptic weights, can be viewed as a form
of homeostatic plasticity that prevents the synaptic weights
from diverging.
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Algorithm 1. Online PSP.

input {xt }; parameters γ > 0 and 0 < η < τ

initialize W ∈ Rk×n and M ∈ Sk
++

for t = 1, 2, . . . do
repeat

zt ← zt + γ (Wxt − Mzt )
until convergence
W ← W + η(zt x�

t − W)
M ← M + η

τ
(zt z�

t − M)
end for

B. Hebbian neural networks derived from similarity
matching objectives

Following Oja’s work, several extensions to multichannel
NNs were proposed. In one line of work, online algorithms
were derived from principal subspace projection (PSP) objec-
tives and mapped onto single-layer neural networks [17–19];
however, the synaptic updates in these NNs are not local—
they depend on variables that are not represented in the pre-
or postsynaptic neurons—so they violate basic biophysical
constraints. In another line of work, NNs with local, Hebbian
learning rules for synapses were proposed [47–50]; however,
the synaptic updates were postulated rather than derived from
a principled objective, so the NNs are not normative and lack
theoretical understanding.

To enjoy the benefits of both of these two lines of work, a
normative approach and local learning rules, Pehlevan et al.
[10,51] introduced the following similarity matching objec-
tive from multidimensional scaling [52]:

min
z1,...,zT ∈Rk

1

T 2

T∑
t=1

T∑
t ′=1

(
x�

t xt ′ − z�
t zt ′

)2
, (1)

where zt denotes the output of the NN at time t . The objective
minimizes the squared difference between the similarity of the
inputs and the similarity of the outputs, where similarity is
measured in terms of inner products. The optimal solution
z1, . . . , zT of objective (1) is the projection of the inputs
x1, . . . , xT onto their k-dimensional principal subspace, i.e.,
the subspace spanned by the top k principal components.
Starting from this objective, Pehlevan et al. [10,51] derived
an online gradient-based algorithm for PSP, Algorithm 1 (see
Sec. V for a detailed derivation).

Algorithm 1 can be mapped onto a multichannel single-
layer NN with k point neurons and Hebbian plasticity. The
neural dynamics are assumed to operate on a fast timescale
and equilibrate before the synapses are updated. The synaptic
updates to the feed-forward weights W are naturally viewed
as a combination of Hebbian and homeostatic plasticity. Since
the first term in the synaptic update for the recurrent connec-
tions −M is inversely proportional to the product of the pre-
and postsynaptic activities, the update is often referred to as
anti-Hebbian. Variations of the similarity matching objectives
were used as starting points to derive Hebbian NNs for per-
forming a number of unsupervised dimensionality reduction
tasks that model aspects of early sensory processing [20];
however, these NNs cannot account for multicompartmen-
tal neurons and non-Hebbian forms of plasticity prevalent
throughout the brain [30].

III. MULTICOMPARTMENTAL NEURONS
AND NON-HEBBIAN PLASTICITY

Most neurons in the brain have multicompartmental struc-
tures and learn via non-Hebbian synaptic plasticity rules.
For example, pyramidal neurons, which are the main exci-
tatory neurons of the cortex, receive feed-forward excitatory
inputs (e.g., lower-level sensory inputs) via their proximal
dendrites and feedback excitatory inputs (e.g., from farther
up the cortical hierarchy) via dendrites that extend from the
distal apical tuft [53–56], Fig. 1 (right). These inputs are
integrated in at least two electronically segregated dendritic
compartments—a proximal compartment near the soma of the
pyramidal neuron, and a distal compartment in the apical tuft
[57–60]. Integrated proximal feed-forward inputs are the main
drivers of the pyramidal neuron sodium action potential out-
puts [61,62], while integrated distal feedback inputs generate
calcium plateau potentials that are effective drivers of synaptic
plasticity in the proximal dendrites [63–67].

There are a number of existing consequential models of
both individual pyramidal neurons and other multicompart-
mental neurons [68–83]. These models provide detailed bio-
physical descriptions of the neural dynamics and non-Hebbian
synaptic plasticity, and, through numerical simulation, they
demonstrate computational capabilities of the pyramidal neu-
ron and cortical circuits. However, these models do not
provide a normative framework for understanding multicom-
partmental neurons and non-Hebbian forms of plasticity.

IV. CCA AND SYMMETRIC GENERALIZED
EIGENVALUE PROBLEMS

To develop a normative framework, we first propose a class
of computational objectives. Many linear versions of behav-
iorally relevant learning tasks can be formulated as symmetric
generalized eigenvalue problems. Before stating the general
problem, we first present the special case of CCA in the
context of a pyramidal neuron.

Consider a pyramidal neuron that receives inputs from two
upstream populations of neurons, whose activities at time t are
encoded as the components of the column vectors xt ∈ Rnx

and yt ∈ Rny , Fig. 1 (right). One hypothesis is that the goal
of the pyramidal neuron is to learn associations between these
high-dimensional data streams. What should the objective be?
A relevant associative learning objective is CCA [84], which
identifies subspaces of the input data streams such that the cor-
responding projections of the inputs are maximally correlated.
In one dimension, the objective is to find nx-dimensional and
ny-dimensional row vectors wx and wy that maximize the co-
variance 〈(wxxt )(wyyt )〉 subject to the constraint 〈(wxxt )2〉 =
〈(wyyt )2〉 = 1.

CCA is a special case of the symmetric generalized eigen-
value problem

Av = λBv, A := 〈
ξtξ

�
t

〉
, B := 〈Bt 〉 (2)

when v� = [wx, wy] and

ξt =
[

xt

yt

]
, Bt =

[
xt x�

t
yt y�

t

]
. (3)
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We consider the class of symmetric generalized eigenvalue
problems of the form in Eq. (2), where the pair (ξt , Bt ) ∈
Rn × Sn

+ is a function of the NN inputs; see Table I in Sec. VI
for specific examples. Given such a symmetric generalized
eigenvalue problem and 1 � k < n, we refer to the projection
of the vector ξt onto the k-dimensional subspace spanned by
the top k eigenvectors as the generalized principal subspace
projection (GPSP) of (ξt , Bt ). Our goal is to derive an online
multichannel GPSP algorithm that maps onto a NN with local
learning rules, i.e., the synaptic updates only depend on vari-
ables that are represented in the pre- and postsynaptic neurons
as well as globally broadcast variables. There are existing
online CCA and GPSP algorithms [85–89]; however, these
algorithms cannot be mapped onto NNs with local learning
rules and/or they only find the top one-dimensional projection.

V. AN ONLINE GENERALIZED PRINCIPAL
SUBSPACE PROJECTION ALGORITHM

Here, we derive an online GPSP algorithm and, in the
next section, we show that for many relevant examples the
algorithm maps onto a NN with multicompartmental neurons
and local non-Hebbian learning rules. The reader who is not
interested in the derivation can skip to the end of this section,
where we state our algorithm (Algorithm 2).

A. Similarity matching objective

At each time step t , let ζt ∈ Rk denote the GPSP of (ξt , Bt ).
A useful observation is that ζt is equal to the PSP of the
normalized data

√
B†ξt , where B† is the Moore-Penrose in-

verse of B—to see this, substitute in for A and v in Eq. (2)
with

√
B†A

√
B† and

√
Bv, respectively. Therefore, we can

substitute
√

B†ξt and ζt in for xt and zt , respectively, in the
similarity matching objective (1) for PSP to obtain the GPSP
objective

min
ζ1,...,ζT ∈Rk

1

T 2

T∑
t=1

T∑
t ′=1

(
ξ�

t B†ξt ′ − ζ�
t ζt ′

)2
. (4)

Every optimal solution ζt of the objective (4) is a PSP of
the input

√
B†ξt , which is a GPSP of the input data (ξt , Bt ).

When ξt = xt , ζt = zt , and B = In, we recover the similarity
matching objective (1) from [10].

B. Matrix substitutions

The objective (4) does not readily lead to an online GPSP
algorithm. For example, direct optimization of the objective
via gradient descent with respect to the output ζt requires
taking gradient steps that depend on the inputs (ξt ′ , Bt ′ ) from
every time point t ′ = 1, . . . , T . Rather, following the ap-
proach of Pehlevan et al. [51], we substitute in with dynamic
matrix variables to obtain a minimax algorithm that can be
solved in the online setting. These matrix variables will corre-
spond to feed-forward and lateral synaptic weight matrices in
the NN implementations.

For the cross term in Eq. (4), we introduce the synap-
tic weight matrix W by substituting in with the Legendre

transform

− 1

T

T∑
t=1

ζ�
t

[
1

T

T∑
t ′=1

ζt ′ξ
�
t ′ B†

]
ξt

= min
W∈Rk×n

1

T

T∑
t=1

[−2ζ�
t Wξt + Tr(WBt W�)

]
.

Differentiating the right-hand side of the equality with respect
to W, setting the derivative to zero, and solving for W, we see
that the optimum is achieved at 1

T

∑T
t ′=1 ζt ′ξ

�
t ′ B†. To account

for the quartic term in (4), we introduce the synaptic weight
matrix M by substituting in with the Legendre transform

1

T

T∑
t=1

ζ�
t

[
1

T

T∑
t ′=1

ζt ′ζ�
t ′

]
ζt

= max
M∈Sk++

1

T

T∑
t=1

[
2ζ�

t Mζt − Tr(M2)
]
,

where Sk
++ denotes the set of k × k positive-definite matri-

ces. Differentiating the right-hand side of the equality with
respect to M, setting the derivative to zero, and solving for
M, we see that the optimum is achieved at 1

T

∑T
t ′=1 ζt ′ζ�

t ′ .
Substituting the Legendre transformations into the objective
(4), interchanging the order of optimization,1 and dropping
terms that do not depend on ζt , we arrive at the minimax
objective:

min
W∈Rk×n

max
M∈Sk++

1

T

T∑
t=1

min
ζt ∈Rk

�(W, M, ζt , ξt , Bt ), (5)

where

�(W, M, ζt , ξt , Bt )

:= 2Tr(WBt W�) − Tr(M2) − 4ζ�
t Wξt + 2ζ�

t Mζt . (6)

As a result of introducing the matrix variables, W and M, we
have transformed the minimization problem (4) into the min-
imax objective (5). This objective has the desirable property
that for fixed W and M, the optimal output ζt at time step t
only depends on the input ξt at time step t .

C. Online algorithm

To derive an online algorithm, we assume there is a
separation of timescales between the minimization over the
vectors ζt , which will correspond to neural activities, and the
optimization of the matrices W and M, which will corre-
spond to synaptic weights. At each time step t , we minimize
�(W, M, ζt , ξt , Bt ) with respect to ζt by running gradient
descent steps until convergence,

ζt ← ζt + γ (Wξt − Mζt ) ⇒ ζt = M−1Wξt . (7)

After ζt equilibrates, we optimize 〈�(W, M, ζt , ξt , Bt )〉 with
respect to the matrix variables by taking a stochastic gradient

1Changing the order of optimization in this problem does not affect
the solution due to the saddle point property; see Ref. [90], Sec. 5.4.
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Algorithm 2. Online GPSP.

input {(ξt , Bt )}; parameters γ > 0 and 0 < η < τ

initialize W ∈ Rk×n and M ∈ Sk
++

for t = 1, 2, . . . do
repeat

ζt ← ζt + γ (Wξt − Mζt )
until convergence
W ← W + 2η(ζtξ

�
t − WBt )

M ← M + η

τ
(ζtζ

�
t − M)

end for

descent-ascent step in W and M:

W ← W + 2η
(
ζtξ

�
t − WBt

)
, M ← M + η

τ

(
ζtζ

�
t − M

)
.

(8)

Here η > 0 is the step size for the stochastic gradient descent
steps in W, and τ > 0 denotes the ratio between the learning
rate for W and the learning rate for M. This yields our online
GPSP algorithm, Algorithm 2.

There are a few points worth noting:
(i) Algorithm 2 reduces to Algorithm 1 when ξt = xt , ζt =

zt , and Bt = In for all t .
(ii) Since � is nonconvex-concave in W and M, the

minimization over W cannot be interchanged with the max-
imization over M in Eq. (5). Therefore, to ensure convergence
of the synaptic weights, the M updates need to be sufficiently
fast relative to the W updates, i.e., τ > 0 needs to be suffi-
ciently small.

(iii) Since the symmetric generalized eigenvalue problem
is defined in terms of the averages A := 〈ξtξ

�
t 〉 and B := 〈Bt 〉

and the synaptic update rules are in terms of (ξt , Bt ), which
are functions on the NN inputs, Algorithm 2 establishes a
precise relationship between the symmetric generalized eigen-
value problem and the synaptic learning rules via the variables
(ξt , Bt ).

In general, the biological plausibility and biological inter-
pretation of Algorithm 2 depend on the specific form of ξt
and Bt .

VI. EXAMPLES OF NEURAL NETWORKS FOR
GENERALIZED PRINCIPAL SUBSPACE PROJECTION

We consider several biologically relevant symmetric gen-
eralized eigenvalue problems that can be solved using
Algorithm 2—for different choices of the vector ξt and ma-
trix Bt , Table I. For each symmetric generalized eigenvalue
problem, we map its online algorithm onto a NN with mul-
ticompartmental neurons and non-Hebbian learning rules,
Fig. 2.

A. Canonical correlation analysis

As discussed in Sec. IV, canonical correlation analysis
(CCA) may serve as a useful objective for understanding
computation in pyramidal cells and cortical circuits. Using our
approach, we derived an online CCA algorithm that maps onto
a NN with multicompartmental neurons and non-Hebbian
plasticity [34]. Substituting the expressions for (ξt , Bt ) from

TABLE I. A list of learning tasks with symmetric generalized
eigenvalue problem formulations that can be solved with NNs de-
rived using our framework.

No. of
Learning task ξt Bt compartments

PCA xt In 1

CCA

[
xt

yt

] [
xt x�

t

yt y�
t

]
3

SFA xt + xt−1 xt x�
t 2

ICA (FOBI) xt

∥∥C−1/2
X xt

∥∥2
xt x�

t 2

cPCA* δt xt (1 − δt )xt x�
t 2

Eq. (3) into Algorithm 2 results in an online algorithm that
maps onto a single-layer NN, Fig. 2 (far left).

At each time step t , the NN receives inputs xt and yt . The
inputs are projected onto the feed-forward synaptic weights
Wx and Wy, which combine to form the feed-forward weight
matrix W := [Wx, Wy], to generate dendritic currents at =
Wxxt and bt = Wyyt that are stored in separate dendritic
compartments. The output of the neurons zt = ζt , which is
represented in a third compartment, is computed by running
the recurrent neural dynamics:

zt ← zt + γ (at + bt − Mzt ) ⇒ zt = M−1(at + bt ).

After the neural dynamic equilibrate, the synaptic weights
are updated. The feed-forward synaptic weight updates are
given by

Wx ← Wx + 2η(zt − at )x�
t , Wy ← Wy + 2η(zt − bt )y�

t .

Since the components of the vectors at , bt , and zt are
represented in the postsynaptic neurons, the synaptic updates
are local, but non-Hebbian. The lateral recurrent synaptic
weight updates are as in Algorithm 2 with ζt = zt .

The NN is consistent with certain aspects of experimen-
tally observed physiology and anatomy of pyramidal neurons
and cortical circuits. Each neuron includes two dendritic
compartments that separately integrate the inputs xt and yt .
Rearranging the formula for the equilibrium neural outputs zt

of the NN, we see that bt = Mzt − at and so we can rewrite
the proximal synaptic updates as

Wy ← Wy + 2η(at − [M − Ik]zt )y�
t .

From this formulation of the synaptic update, we can interpret
the difference between the distal currents at and the recurrent
lateral feedback −[M − Ik]zt as the calcium plateau potential
that drives non-Hebbian plasticity in the proximal synapses,
which is consistent with experimental observations that distal
currents generate calcium plateau potentials that drive plastic-
ity in the proximal synapses, and these plateaus are mediated
by inhibitory inputs [63–67].

The NN for CCA includes direct lateral connections be-
tween the pyramidal cells; however, in cortical circuits, lateral
communication is typically mediated by local interneurons.
By modifying the starting CCA objective to include an output
whitening constraint, we can derive an algorithm that faith-
fully maps onto the wiring diagram of a cortical microcircuit
consisting of both pyramidal neurons and interneurons [34].
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FIG. 2. NNs for GPSP. In each NN, circles denote neurons, and solid lines with circles at the ends are synapses. The synaptic updates
depend on the variables inside the circles, which are encoded in different compartments of the neuron, and globally broadcast variables. For
ICA, the orange box denotes the presence of a scalar variable (specifically, ‖zt‖2) that is available to each output neuron. For cPCA*, the scalar
δt is an indicator variable that gates the output of the NN and is available to each output neuron.

Finally, the output of the neurons in this circuit is symmet-
ric in the integrated currents at and bt ; however, experimental
evidence suggests that the feed-forward proximal inputs and
feedback distal inputs are integrated asymmetrically by the
pyramidal neuron [61–67], which is in contrast to our model
that treats the inputs symmetrically. In [91,92], we derived an
online algorithm for CCA when interpreted as a supervised
learning task, where the feed-forward inputs are feature vec-
tors and the feedback inputs are supervisory signals. In this
case, the output of the circuit is exclusively driven by the
feed-forward inputs.

B. Slow feature analysis

Brains are adept at learning meaningful latent representa-
tions from noisy, high-dimensional data. Often, the relevant
features in the environment (e.g., objects) change slowly com-
pared with noisy sensory data, so temporal slowness has been
proposed as a computational principle for identifying latent
features [93–95]. A popular approach for extracting slow fea-
tures, introduced by Wiskott and Sejnowski [95], is called
SFA. SFA is an unsupervised learning algorithm that extracts
the slowest projection, in terms of discrete time derivative,
from a nonlinear expansion of the input signal. When trained
on natural images, SFA learns features that resemble proper-
ties of complex cells in the primary visual cortex [96]. Further,
when trained on a simulated visual stream, a hierarchical
version of SFA learns representations of orientation and space
similar to those encoded in the hippocampus [97]. Together,
these observations suggest that the cortex may use tempo-
ral slowness as a computational principle in representation
learning.

The projection of the nonlinear expansion can be formu-
lated as a generalized eigenvalue problem of the form (2) with
ξt = xt + xt−1 and Bt = xt x�

t . Substituting into Algorithm 2
yields an online algorithm that maps onto a single-layer NN
[35], Fig. 2 (middle left). At each time step t , the NN receives
inputs xt , which are projected onto the weight matrix W to
generate dendritic currents ct = Wxt . The dendritic currents
ct are stored in a separate compartment from the NN outputs
zt , so each neuron consists of two compartments. Letting
ζt = zt + zt−1 and assuming the weights do not significantly

change between time steps t − 1 and t , we can rewrite the
neural dynamics in Algorithm 2 as

zt ← zt + γ (ct − Mzt ) ⇒ zt = M−1ct .

Substituting in with the definitions of ξt , Bt , ct , and ζt ,
the feed-forward synaptic weight updates from Algorithm 2
are given by �W = η((zt + zt−1)(xt + xt−1)� − ct x�

t ). The
synaptic update depends on low-frequency signals in both the
pre- and postsynaptic neurons; however, dendrites are more
likely to store low-frequency signals than axons.

If the input time series is stationary and reversible in time
(i.e., 〈xt x�

t−1〉 = 〈xt−1x�
t 〉), we can rewrite the synaptic up-

dates so they only depend on low-frequency signals in the
postsynaptic neurons and

W ← W + 2η(2zt + 2zt−1 − ct )x�
t .

Empirically, this modification extracts slow signals even when
the time series is not reversible [35]. Assuming that the post-
synaptic neurons represent their low-pass filtered activities
zt + zt−1 as well as their dendritic currents ct , the learning
rules only depend on variables that are available in the pre-
and postsynaptic neurons and so the synaptic updates are
local, but non-Hebbian. Finally, the first term in the synaptic
weights update resembles the first term in the following local
“trace rule” proposed by Földiák [93] for learning temporally
invariant features:

Wtrace ← Wtrace + η
(
(zt + zt−1)x�

t − diag(zt + zt−1)Wtrace
)
.

Therefore, this normative NN model establishes a relationship
between a computational objective for SFA and a variant of
the proposed trace rule.

C. Independent components analysis

Efficient coding theories of sensory processing posit that
early sensory layers transform their inputs to reduce redun-
dancy [98,99]. Independent components analysis (ICA) is a
statistical method for reducing redundancy by factorizing the
sensory inputs into “independent components,” and it can
explain edge detector neurons in area V1 of the visual cortex
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[100,101] and receptive fields of cochlear nerve fibers in the
auditory system [102].

ICA assumes a generative model xt = Ast , where st is the
n-dimensional source vectors with independent components,
A is an n × n mixing matrix, and xt is the n-dimensional mix-
ture vector. One method for solving ICA, called fourth-order
blind identification (FOBI) [103], assumes the components of
the sources have distinct kurtosis (i.e., fourth-order moments).
FOBI can be solved in three steps: (i) whitening the mixture
vector: ht = C−1/2

X xt ; (ii) weighting the whitened mixtures by
their norms: yt = ‖ht‖ht ; and (iii) projecting the whitened
mixtures ht onto the principal components of yt . Remark-
ably, these three steps can be combined and expressed as a
single symmetric generalized eigenvalue problem of the form
(2) with ξt = xt and Bt = ‖ht‖2xt x�

t , so we can apply our
framework. Substituting into Algorithm 2 results in an online
algorithm that maps onto a single-layer NN with multicom-
partmental neurons and local non-Hebbian learning rules [36],
Fig. 2 (middle right).

At each time step t , the NN receives inputs xt , which
are projected onto the feed-forward synaptic weights W to
generate dendritic currents ct = Wxt . The dendritic currents
ct are stored in a separate compartment from the NN outputs
zt = ζt , so each neuron consists of two compartments. The
neural dynamics in Algorithm 2 can be written as

zt ← zt + γ (ct − Mzt ) ⇒ zt = M−1ct .

Substituting the expression for Bt into the feed-forward
synaptic weight update in Algorithm 2 results in the update
�W = η(zt − ‖ht‖2ct )x�

t . As stated in step (iii) of FOBI,
the outputs zt are equal to the (full-rank) projection of the
whitened inputs ht onto the principal components of yt , which
implies that zt is an orthogonal transformation of the whitened
inputs at each time t . Therefore, ‖ht‖ = ‖zt‖ and we can
rewrite the feed-forward synaptic update as

W ← W + 2η
(
zt − ‖zt‖2ct

)
x�

t .

Interestingly, the resulting synaptic learning rules are globally
modulated by the total activity of the output neurons ‖zt‖2,
which could be accounted for by biophysical quantities such
as neuromodulators, extracellular calcium, local field poten-
tial, or nitric oxide.

D. Contrastive principal component analysis*

Sensory organs receive an immense amount of information
per unit time, but much of it is of little relevance for behavior.
A simple approach to process this high-dimensional input
is to focus on a lower-dimensional subspace and ignore the
directions that are less informative. PCA achieves this by
discarding the directions with low variance. Such an approach
is, however, inefficient in cases where the irrelevant directions
are very noisy, thus having greater variance than the relevant
ones. If we have access to representative samples of variability
in irrelevant directions (“negative samples”), we can achieve
better efficiency by using a contrastive variant of PCA, as in
[104]. Contrastive PCA (cPCA) finds the subspace of highest
relevant variance, associated with “positive samples,” while
minimizing the variance associated with irrelevant informa-
tion, as inferred from negative samples.

In [37], we consider a more robust cPCA method, which
we refer to as cPCA*, and we derive an online algorithm
with a neural implementation. Assume we have a sequence of
centered inputs (x1, δ1), . . . , (xT , δT ) ∈ Rn × {0, 1}. At each
time t , the input xt is a feature vector that is either a positive
sample or a negative sample, so the positive and negative
samples arrive via the same pathway. The scalar variable δt

is equal to 1 (0) if the xt is a positive (negative) sample.
The covariance matrices for the positive and negative samples
are given, respectively, by C(+) := 〈xt x�

t |δt = 1〉 and C(−) :=
〈xt x�

t |δt = 0〉. The goal of cPCA* is to project the feature
vectors xt onto vectors v to maximize the ratio of v�C(+)v
and v�C(−)v, which corresponds to the symmetric generalized
eigenvalue problem of the form (2) with ξt := δt xt and Bt :=
(1 − δt )xt x�

t . When the positive samples are measurements
of signal + noise and the negative samples are measurements
of noise, the problem is closely related to linear discriminant
analysis [105] and joint decorrelation methods [106]. Substi-
tuting into Algorithm 2 results in an online algorithm that
maps onto a single-layer NN with multicompartmental neu-
rons and local non-Hebbian learning rules, Fig. 2 (far right).

At each time step t , the NN receives inputs xt and δt . The
inputs xt are projected onto the feed-forward weights W to
generate dendritic currents ct = Wxt . The neural dynamics
and synaptic updates for positive and negative samples are
given as follows:

δt Fast neural dynamics Slow synaptic updates

1 zt ← zt + γ (ct − Mzt ) W ← W + 2ηzt x�
t

0 zt = 0 W ← W − 2ηct x�
t

The scalar δt is naturally interpreted as indicated by the
presence or absence of a neuromodulator that gates the output
zt of the NN. Assuming the dendritic currents ct and neural
outputs zt are represented in the postsynaptic neurons, and δt

is globally available, the synaptic updates are local and non-
Hebbian. In both cases, the lateral synapses −M are updated
according to Algorithm 2 with ζt = zt .

VII. NON-NEGATIVE SIMILARITY MATCHING

Most biological neurons perform nonlinear transforma-
tions and have non-negative outputs. In addition, many
interesting computations require nonlinear transformations.
We can adapt the objective to account for both the nonlinear
transformation and the non-negativity of the neural outputs
by imposing a non-negativity constraint on the outputs ζt in
Eq. (4), which results in the non-negative similarity matching
objective:

min
ζ1,...,ζT ∈Rk+

1

T 2

T∑
t=1

T∑
t ′=1

(
ξ�

t B†ξt ′ − ζ�
t ζt ′

)2
, (9)

where Rk
+ denotes the non-negative orthant in Rk . Imposing

the non-negative constraint transforms the problem from a
spectral matrix factorization problem to a non-negative matrix
factorization problem. For the special case in which B = In,
Pehlevan and Chklovskii [107], Bahroun and Soltoggio [108],
Sengupta et al. [109], and Qin et al. [110] explored the
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relationship between the objective (9) and clustering, sparse
representation learning, manifold tiling, and supervised learn-
ing. However, aside from a specific generative model (see
Sec. VII B below), it is not clear how to interpret objective
(9) when B is not the identity matrix.

A. An online algorithm

We can derive an online algorithm for solving the objective
(9) following the same steps as in Sec. V for deriving an
online GPSP algorithm. First, we perform the same matrix
substitutions to arrive at the minimax problem

min
W∈Rk×n

max
M∈Sk++

min
ζ1,...,ζT ∈Rk+

〈�(W, M, ζt , ξt , Bt )〉, (10)

where � is defined as in Eq. (6). To solve the minimax problem
(10) in the online setting, at each time step t , we first minimize
� with respect to ζt ∈ Rk

+ by taking projected gradient steps
until convergence:

ζt ← [ζt + γ (Wξt − Mζt )]+,

where [·]+ denotes taking the non-negative part elementwise.
The minimization is still over a convex set; however, unlike
the GPSP setting, we do not have a closed-form expression
for the output ζt . After ζt converges, we update the matrices
W and M by taking a stochastic gradient descent-ascent step,
which results in the exact same updates as in Eq. (8).

B. Non-negative independent component analysis

As discussed in Sec. VI C, ICA is a statistical method for
factorizing sensory inputs into independent components. A
special case is called non-negative independent component
analysis (NICA), which assumes a generative model in which
the mixture of stimuli is a linear combination of uncorre-
lated, non-negative sources; i.e., xt = Ast , where st denotes
the non-negative vector of source intensities, A is a mixing
matrix, and xt denotes the vector of mixed stimuli. The goal
of NICA is to infer the non-negative source vectors st from
the mixture vectors xt . Both the linear additivity of stimuli and
the non-negativity of the sources are reasonable assumptions
in biological applications. For example, in olfaction, concen-
trations of odorants are both additive and non-negative.

While NICA cannot be expressed as a GPSP problem,
it can be solved using the non-negative similarity matching
framework. Pehlevan et al. [111] solved NICA with an online
algorithm that can be implemented in a two-layer network
with point neurons and Hebbian/anti-Hebbian learning rules,
where each layer is derived from a separate objective func-
tion. The two objective functions can be combined into a
single non-negative similarity matching objective of the form
(9) with ξt = xt and Bt = (xt − 〈xt 〉)(xt − 〈xt 〉)�. Starting

from the non-negative similarity matching objective, we de-
rived an online algorithm for solving NICA that maps onto
a single-layer network with multicompartmental neurons and
non-Hebbian plasticity [38].

At each time step t the NN receives inputs xt which are pro-
jected onto the feed-forward weights to generate the dendritic
current ct , which is stored in a separate compartment from the
NN outputs zt = ζt . The fast neural dynamics are given by

zt ← [zt + γ (ct − Mzt )]+.

After the neural dynamics equilibrate, the feed-forward
synaptic weights are updated according to the learning rule

W ← W + 2η
(
zt x�

t − (ct − c̄t )(xt − x̄t )
�)

,

where we have replaced W〈xt 〉 (〈xt 〉) with the running average
c̄t (x̄t ) of the dendritic current (inputs), which could be physi-
cally represented as local ion concentrations at the synapses.

VIII. DISCUSSION

In this work, we proposed an extension of the similarity
matching objective to include a broad class of symmetric gen-
eralized eigenvalue problems. Starting from this objective, we
derived an online algorithm and showed that for several exam-
ples, the algorithm maps onto a NN with multicompartmental
neurons and local, non-Hebbian learning rules. Furthermore,
we proposed a modification of our framework to solve a broad
class of non-negative matrix factorization problems, and we
mapped a specific example onto a NN with multicompartmen-
tal neurons, local learning rules, and rectified outputs.

Our framework establishes a precise relationship between
synaptic learning rules and computational objectives. In par-
ticular, the synaptic learning rules in Algorithm 2 are related
to the symmetric generalized eigenvalue problem (2) via the
variables ξt and Bt . Therefore, given a symmetric general-
ized eigenvalue problem of the form (2), one can predict the
synaptic learning rules for the NN. Conversely, given synaptic
learning rules of the form in Algorithm 2, one can predict the
computational objective for the NN. We believe this unified
framework for relating non-Hebbian synaptic learning rules
to computational objectives will be useful for understanding
forms of non-Hebbian plasticity found throughout the brain.

Finally, in addition to the framework presented here, there
are other normative approaches for deriving online algorithms
that map onto NNs with multicompartmental neurons and
solve symmetric generalized eigenvalue problems and other
related problems [91,112–115].
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