

ADAPTIVE DECORRELATION USING GAIN-MODULATING INTERNEURONS

UT Austin

DAVID LIPSHUTZ 31 AUGUST 2023

Lyndon Duong

Flatiron Institute / NYU

David Heeger NYU

Dmitri "Mitya" Chklovskii Flatiron Institute / NYU

Eero Simoncelli Flatiron Institute / NYU

Dynamic range

Dynamic range

Dynamic range

Redundancy

Neurons encode maximum information about the environment using limited resources

Neurons encode **maximum information** about the environment using limited resources

• Single neurons are adapted to use their entire dynamic range

Neurons encode **maximum information** about the environment using limited resources

- Single neurons are adapted to use their entire dynamic range
- Neuron populations are adapted to reduce redundancy

Laughlin 1981

Reported in:

- Songbird auditory forebrain: [Nagel & Doupe, 2006]
- Fly vision: [Brenner et al. 2000; Fairhall et al., 2001]
- Salamander retina [Chander & Chichilnisky 2001, Baccus & Meister 2002]
- Cat LGN [Mante et al. 2005]
- & more

Reported in:

Fast & reversible! ~50ms

- Songbird auditory forebrain: [Nagel & Doupe, 2006]
- Fly vision: [Brenner et al. 2000; Fairhall et al., 2001]
- Salamander retina [Chander & Chichilnisky 2001, Baccus & Meister 2002]
- Cat LGN [Mante et al. 2005]
- & more

90

timescale \sim 1.5s / 50 stimuli

Whitening: normalization + decorrelation

Whitening: normalization + decorrelation

Whitening: normalization + decorrelation

Fundamental to:

- Signal processing (e.g. ICA)
- Machine learning (unsupervised feature learning, self-supervised learning)
- Neural computation?
 - Cat V1 [Muller et al. 1999; Benucci et al. 2013]
 - Salamander retina [Pitkow & Meister 2012]
 - Zebrafish olfactory bulb [Wiechart et al. 2010; Wanner & Friedrich 2020]
 - Mouse olfactory bulb [Giridhar et al. 2011; Gschwend et al. 2015]

Stimulus distribution

Q: Can neural circuits **decorrelate** their responses using **gain modulation**?

Traditional approaches (PCA)

Principal axes must be **relearned** for different input densities.

Traditional approaches (PCA)

Principal axes must be **relearned** for different input densities.

Traditional approaches (PCA)

Our approach

Principal axes must be **relearned** for different input densities.

Traditional approaches (PCA)

Principal axes must be **relearned** for different input densities.

Our approach

Traditional approaches (PCA)

Principal axes must be **relearned** for different input densities.

Our approach

Must be overcomplete

Must be overcomplete

# Primary neurons	# 1D Projections
2	3
3	6
10	55
100	5K

Adaptive whitening via gain modulation

Adaptive whitening via gain modulation

Adaptive whitening via gain modulation

Stimulus distribution

 s_2

Stimulus distribution

Gain-modulating interneurons

Response distribution

 r_1

fast neural dynamics: $\frac{d\mathbf{r}}{dt} = \mathbf{s} - \mathbf{r} - \mathbf{W}\mathbf{n}$

Summary

Q: Can neural circuits **decorrelate** their responses using **gain modulation**?

Q: Can neural circuits **decorrelate** their responses using **gain modulation**?

A: Yes. Using **gain-modulating interneurons** and a novel mathematical perspective.

Summary

Q: Can neural circuits **decorrelate** their responses using **gain modulation**?

A: Yes. Using **gain-modulating interneurons** and a novel mathematical perspective.

Prediction: Local interneurons modulate their gains in response to changes in their **input variance**

But wait...

# primary neurons	# interneurons
2	3
3	6
10	55
100	5K

Natural context examples

Adaptation objective

Multi-timescale adaptive RNN architecture

Training procedure:

- 1. Sample context from all possible contexts
- 2. Sample stimulus within context 1000x

Training procedure:

- 1. Sample context from all possible contexts
- 2. Sample stimulus within context 1000x

Training procedure:

- 1. Sample context from all possible contexts
- 2. Sample stimulus within context 1000x

Training procedure:

- 1. Sample context from all possible contexts
- 2. Sample stimulus within context 1000x

Weights before/after training

Training procedure:

 10^{3}

- 1. Sample context from all possible contexts
- 2. Sample stimulus within context 1000x

Adaptive whitening of natural images

Adaptive whitening of natural images

synapses learn 2D sinusoidal filters

Dependence on the # of interneurons

Circuit with **fast** gain modulation and **slow** synaptic plasticity

Circuit with **fast** gain modulation and **slow** synaptic plasticity

Complementary computations:

• gains adapt within each context to whiten responses

Circuit with **fast** gain modulation and **slow** synaptic plasticity

Complementary computations:

- gains adapt within each context to whiten responses
- synapses adapt across contexts to learn structural properties of the inputs

synapses learn across contexts

gains adapts within context

gains adapts within context

Thank you

Lyndon Duong NYU

David Heeger NYU

Dmitri "Mitya" Chklovskii Flatiron Institute / NYU

RON

Center for Computational Neuroscience

Eero Simoncelli Flatiron Institute / NYU

Duong*, **Lipshutz***, Heeger, Chklovskii & Simoncelli, Adaptive whitening in neural populations with gain-modulating interneurons. *ICML*, 2023

Duong, Simoncelli, Chklovskii & Lipshutz, Adaptive whitening with fast gain modulation and slow synaptic plasticity. *arXiv* preprint, 2023