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Efficient coding hypothesis

Neurons encode maximum information about the environment using limited resources

• Single neurons are adapted to use their entire dynamic range

• Neuron populations are adapted to reduce redundancy

Attneave 1954; Barlow 1961; Laughlin 1981; Atick 1992; van Hateren 1997; Simoncell & Olshausen 2001; …
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Adaptive efficient coding in single neurons

Dynamic range

Fast & reversible! 
~50ms

Gain control

Reported in: 
• Songbird auditory forebrain: [Nagel & Doupe, 2006] 

• Fly vision: [Brenner et al. 2000; Fairhall et al., 2001] 

• Salamander retina [Chander & Chichilnisky 2001, Baccus & Meister 2002] 

• Cat LGN [Mante et al. 2005] 

• & more
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Adaptive decorrelation in a neural population

Benucci et al. 2013

w/o adaptation

CorrelationsTuning curves

w/ adaptation

timescale  1.5s / 50 stimuli∼
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Whitening: normalization + decorrelation

Fundamental to: 
• Signal processing (e.g. ICA) 
• Machine learning (unsupervised feature learning, self-supervised learning) 
• Neural computation? 

• Cat V1 [Muller et al. 1999; Benucci et al. 2013] 
• Salamander retina [Pitkow & Meister 2012] 
• Zebrafish olfactory bulb [Wiechart et al. 2010; Wanner & Friedrich 2020] 
• Mouse olfactory bulb [Giridhar et al. 2011; Gschwend et al. 2015]
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Gain modulation in neural populations

Stimulus distribution Single neuron gain adaptation Response distribution

Correlations remain!

Dynamic range
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Existing adaptive neural network models
Stimulus distribution Models Response distribution

Direct connections

Auxiliary interneurons

Wick et al. 2010; Pehlevan et al. 2015; Chapochnikov et al. 2023; …



Q: Can neural circuits decorrelate their 
responses using gain modulation? 
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Geometric intuition

Necessary & sufficient: 
3 projected distribution variances = 1!
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Must be overcomplete

# Primary neurons # 1D Projections

2 3

3 6

10 55

100 5K
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enforce variance 
constraints

match response  
to stimuli

Adaptive whitening via gain modulation
Adaptation objective

Adaptation algorithm
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Adaptive neural circuit w/ gain-modulating interneurons

Gain-modulating interneuronsStimulus distribution Response distribution

Correlations removed!
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Summary

Q: Can neural circuits decorrelate their 
responses using gain modulation?

A: Yes. Using gain-modulating interneurons 
and a novel mathematical perspective.

Prediction: Local interneurons modulate 
their gains in response to changes in their 
input variance
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Multi-timescale adaptive RNN architecture
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Learning to adapt across and within contexts

Context 1

Context 100Context 2Context 1

…

Training procedure: 
1. Sample context from all possible contexts 
2. Sample stimulus within context 1000x

Weights before/after training Error through training

Stimulus sample

Within-context error before/after training
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Adaptive whitening of natural images

synapses learn 2D sinusoidal filters



Dependence on the # of interneurons
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Summary
Circuit with fast gain modulation and 
slow synaptic plasticity

Complementary computations:
• gains adapt within each context to 

whiten responses
• synapses adapt across contexts to 

learn structural properties of the 
inputs
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gains adapts within context 



Thank you

Lyndon Duong 
NYU

David Heeger 
NYU

Dmitri “Mitya” Chklovskii 
Flatiron Institute / NYU

Eero Simoncelli 
Flatiron Institute / NYU

Duong*, Lipshutz*, Heeger, Chklovskii & Simoncelli, Adaptive whitening in neural populations with gain-modulating 
interneurons. ICML, 2023 

Duong, Simoncelli, Chklovskii & Lipshutz, Adaptive whitening with fast gain modulation and slow synaptic plasticity. arXiv 
preprint, 2023


